Neural-Symbolic Learning Systems
Bestellnummer: 1440148
- Kauf auf Rechnung
- Kostenlose Rücksendung
- Ratenzahlung möglich
Bestellnummer: 1440148
Perspectives in Neural Computing: Neural-Symbolic Learning Systems
Dov M. Gabbay, Krysia B. Broda, Artur S. d'Avila Garcez
Statt 128.39 € 19
123.91 €
156.70 €
34.90 €
Soft Computing and Fractal Theory for Intelligent Manufacturing
Oscar Castillo, Patricia Melin
176.54 €
176.54 €
160.45 €
107.50 €
128.39 €
139.09 €
149.79 €
39.99 €
181.89 €
160.49 €
106.99 €
39.99 €
149.79 €
123.04 €
106.95 €
Statt 139.09 € 19
128.39 €
112.34 €
139.09 €
106.99 €
Conditionals and Modularity in General Logics / Cognitive Technologies
Dov M. Gabbay, Karl Schlechta
Statt 139.99 € 19
128.39 €
139.99 €
176.54 €
Revision, Acceptability and Context / Cognitive Technologies
Dov M. Gabbay, Odinaldo T. Rodrigues, Alessandra Russo
Statt 176.54 € 19
171.19 €
Logical Tools for Handling Change in Agent-Based Systems / Cognitive Technologies
Dov M. Gabbay, Karl Schlechta
Statt 176.54 € 19
171.19 €
176.54 €
Neural-Symbolic Cognitive Reasoning / Cognitive Technologies
Artur S. d'Avila Garcez, Luís C. Lamb, Dov M. Gabbay
Statt 85.59 € 19
74.89 €
85.59 €
This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications.
Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.
1.1 Why Integrate Neurons and Symbols?
1.2 Strategies of Neural-Symbolic Integration
1.3 Neural-Symbolic Learning Systems
1.4 A Simple Example
1.5 How to Read this Book
1.6 Summary
2. Background
2.1 General Preliminaries
2.2 Inductive Learning
2.3 Neural Networks
2.3.1 Architectures
2.3.2 Learning Strategy
2.3.3 Recurrent Networks
2.4 Logic Programming
2.4.1 What is Logic Programming?
2.4.2 Fixpoints and Definite Programs
2.5 Nonmonotonic Reasoning
2.5.1 Stable Models and Acceptable Programs
2.6 Belief Revision
2.6.1 Truth Maintenance Systems
2.6.2 Compromise Revision
I. Knowledge Refinement in Neural Networks
3. Theory Refinement in Neural Networks
3.1 Inserting Background Knowledge
3.2 Massively Parallel Deduction
3.3 Performing Inductive Learning
3.4 Adding Classical Negation
3.5 Adding Metalevel Priorities
3.6 Summary and Further Reading
4. Experiments on Theory Refinement
4.1 DNA Sequence Analysis
4.2 Power Systems Fault Diagnosis
4.3.Discussion
4.4.Appendix
II. Knowledge Extraction from Neural Networks
5. Knowledge Extraction from Trained Networks
5.1 The Extraction Problem
5.2 The Case of Regular Networks
5.2.1 Positive Networks
5.2.2 Regular Networks
5.3 The General Case Extraction
5.3.1 Regular Subnetworks
5.3.2 Knowledge Extraction from Subnetworks
5.3.3 Assembling the Final Rule Set
5.4 Knowledge Representation Issues
5.5 Summary and Further Reading
6. Experiments on Knowledge Extraction
6.1 Implementation
6.2 The Monk's Problems
6.3 DNA Sequence Analysis
6.4 Power Systems Fault Diagnosis
6.5 Discussion
III. Knowledge Revision in Neural Networks
7. Handling Inconsistencies in Neural Networks
7.1 Theory Revision in Neural Networks
7.1.1The Equivalence with Truth Maintenance Systems
7.1.2Minimal Learning
7.2 Solving Inconsistencies in Neural Networks
7.2.1 Compromise Revision
7.2.2 Foundational Revision
7.2.3 Nonmonotonic Theory Revision
7.3 Summary of the
8. Experiments on Handling Inconsistencies
8.1 Requirements Specifications Evolution as Theory Refinement
8.1.1Analysing Specifications
8.1.2Revising Specifications
8.2 The Automobile Cruise Control System
8.2.1Knowledge Insertion
8.2.2Knowledge Revision: Handling Inconsistencies
8.2.3Knowledge Extraction
8.3 Discussion
8.4 Appendix
9. Neural-Symbolic Integration: The Road Ahead
9.1 Knowledge Extraction
9.2 Adding Disjunctive Information
9.3 Extension to the First-Order Case
9.4 Adding Modalities
9.5 New Preference Relations
9.6 A Proof Theoretical Approach
9.7 The "Forbidden Zone" [Amax, Amin]
9.8 Acceptable Programs and Neural Networks
9.9 Epilogue
- Autoren: Artur S. d'Avila Garcez , Krysia B. Broda , Dov M. Gabbay
- 2002, 2002, 271 Seiten, 30 Schwarz-Weiß-Abbildungen, Maße: 15,5 x 23,5 cm, Kartoniert (TB), Englisch
- Verlag: Springer
- ISBN-10: 1852335122
- ISBN-13: 9781852335120
- Erscheinungsdatum: 06.08.2002
Keine Kommentare vorhanden
Jetzt bewertenSchreiben Sie den ersten Kommentar zu "Neural-Symbolic Learning Systems".
Kommentar verfassen
156.70 €
34.90 €
Soft Computing and Fractal Theory for Intelligent Manufacturing
Oscar Castillo, Patricia Melin
176.54 €
176.54 €
160.45 €
107.50 €
128.39 €
139.09 €
149.79 €
39.99 €
181.89 €
160.49 €
106.99 €
39.99 €
149.79 €
123.04 €
106.95 €
Zustand | Preis | Porto | Zahlung | Verkäufer | Rating |
---|
- Kauf auf Rechnung
- Kostenlose Rücksendung
- Ratenzahlung möglich
Keine Kommentare vorhanden
Jetzt bewertenSchreiben Sie den ersten Kommentar zu "Neural-Symbolic Learning Systems".
Kommentar verfassen