Contents

Preface	v
Illustrations	xiv
I. Question and Method	1
1. Methodological Approaches to the History of Science	1
2. Categories for the Analysis of Culturally Shaped Conceptual	
Developments	8
3. An unusual Pair: Negative Numbers and Infinitely Small	
Quantities	10
II. Paths Toward Algebraization – Development to the Eighteenth	
Century. The Number Field	15
1. An Overview of the History of Key Fundamental Concepts	15
1.1. The Concept of Number	16
1.2. The Concept of Variable	19
1.3. The Concept of Function	20
1.4. The Concept of Limit	22
1.5. Continuity	25
1.6. Convergence	27
1.7. The Integral	30
2. The Development of Negative Numbers	32
2.1. Introduction	32
2.2 An Overview of the Early History of Negative Numbers	35
From Antiquity to the Middle Ages	35
European Mathematics in the Middle Ages	39
2.3. The Onset of Early Modern Times. The First "Ruptures"	
in Cardano's Works	40
2.4. Further Developments in Algebra: From Viète to	
Descartes	45

VIII	Contents	
	2.5. The Controversy Between Arnauld and Prestet	49
	A New Type of Textbook	49
	Antoine Arnauld	50
	Jean Prestet	52
	The Controversy	54
	The Debate's Effects on Their Textbook Reeditions	57
	2.6. An Insertion: Brief Comparison of the Institutions for	
	Mathematical Teaching in France, Germany, and England	61
	Universities and Faculties of Arts and Philosophy	61
	The Status of Mathematics in Various Systems of	
	National Education	64
	New Approaches in the Eighteenth Century	66
	2.7. First Foundational Reflections on Generalization	67
	2.8. Extension of the Concept Field to 1730/40	73
	2.8.1. France	73
	2.8.2. Developments in England and Scotland	88
	2.8.3. The Beginnings in Germany	95
	2.9. The Onset of an Epistemological Rupture	99
	2.9.1. Fontenelle: Separation of Quantity from Quality	99
	2.9.2. Clairaut: Reinterpreting the Negative as Positive	102
	2.9.3. D'Alembert: The Generality of Algebra-An	
	Inconvénient	104
	2.10. Aspects of the Crisis to 1800	114
	2.10.1. Stagnant Waters in the French University	
	Context	114
	2.10.2. The Military Schools as Multipliers	121
	2.10.3. Violent Reaction in England and Scotland	126
	2.10.4. The Concept of Oppositeness in Germany	132
	2.11. Looking Back	149
III.	Paths toward Algebraization—The Field of Limits: The	
Deve	lopment of Infinitely Small Quantities	151
1	. Introduction	151

Development of Infinitely Small Quantities	151
1. Introduction	151
2. From Antiquity to Modern Times	153
Concepts of the Greek Philosophers	154
3. Early Modern Times	157

Contents	IX
4. The Founders of Infinitesimal Calculus	161
5. The Law of Continuity: Law of Nature or Mathematical	
Abstraction?	174
6. The Concept of Infinitely Small Quantities Emerges	186
7. Consolidating the Concept of Infinitely Small Quantities	192
8. The Elaboration of the Concept of Limit	206
8.1. Limits as MacLaurin's Answer to Berkeley	206
8.2. Reception in the Encyclopédie and Its Dissemination	209
8.3. A Muddling of Uses in French University Textbooks	213
8.4. First Explications of the Limit Approach	220
8.5. Expansion of the Limit Approach and Beginnings of Its	
Algebraization	228
9. Operationalizations of the Concept of Continuity	238
10. A Survey	255
IV. Culmination of Algebraization and <i>Retour du Refoulé</i>	257
1. The Number Field: Additional Approaches Toward	
Algebraization in Europe and Countercurrents	257
1.1. Euler: The Basis of Mathematics is Numbers, not	
Ouantities	257
1.2. Condillac: Genetic Reconstruction of the Extension of the	
Number Field	260
1.3. Buée: Application of Algebra as a Language	265
1.4. Fundamentalist Countercurrents	268
Klostermann: Elementary Geometry versus Algebra	276
2. The Limit Field: Dominance of the Analytic Method in France	
After 1789	279
2.1. Apotheosis of the Analytic Method	279
2.2. Euler's Reception	283
2.3. Algebraic Approaches at the <i>École Polytechnique</i>	286
3. Le Retour du Refoulé: The Renaissance of the Synthetic	
Method at the <i>École Polytechnique</i>	295
3.1. The Original Conception	295
3.2. Changes in the Structure of Organization	296
3.3. The First Crisis: Pressure from the <i>Corps du Génie</i> and	
the Artillery	298

Х	Contents	
	3.4. The New Teaching Concept of 1800	302
	3.5. Modernization of the Corps du Génie and Extension of	
	the School in Metz	303
	3.6. The Crisis at the École Polytechnique in 1810/11	306
V. 1	Le Retour du Refoulé: From the Perspective of Mathematical	
Coi	icepts	309
	1. The Role of Lazare Carnot and His Conceptions	309
	1.1. Structures and Personalities	309
	1.2. A Short Biography	312
	1.3. The Development of Carnot's Ideas on Foundations:	
	Analyse and Synthèse	318
	1.4. The Change in Carnot's Ideas	325
	1.5. Relations Between Mechanics and the Foundations of	
	Mathematics	330
	1.6. Infinitesimal Calculus: Carnot's Shift from the Concept of	
	Limit to the Infinitely Small	334
	1.6.1. The Memoir for the Berlin Academy	334
	1.6.2. The 1797 Version	346
	1.6.3. The 1813 Version	348
	1.7. Substituting Negative Numbers with Geometric Terms	353
	1.7.1. Carnot's Writings on Negative Quantities: An	
	Overview	353
	1.7.2. Carnot's Basic Concepts and Achievements	354
	1.7.3. The Development of Carnot's Concept of	
	Negative Quantities	355
	1.7.4. Later Work: L'analyse: La Science de la	
	Compensation des Erreurs	361
	2. Carnot's Impact: Rejecting the Algebraization Program	365
	2.1. Initial Adoption	365
	2.2. Limits and Negative Numbers in the Lectures at the École	
	Normale	366
	2.3. Dissemination of the Algebraic Conception of Analysis	369
	2.4. Analysis Concepts at the <i>École Polytechnique</i> to 1811	371
	2.4.1. The Reorganization About 1799	371
	2.4.2. Lacroix: Propagator of the Méthode des Limites	372

Contents	XI
2.4.3. Further Concept Development: Lacroix, Garnier,	
and Ampère	380
2.4.4. Prony: An Engineer as a Worker on Foundations	390
2.4.5. Lagrange's Conversion to the <i>Infiniment Pétits</i> ?	394
2.5. The Impact of the Return to the Infiniment Petits	398
2.5.1. Impact Inside the $\acute{E}cole$: The "Dualism"	
Compromise	398
2.5.2. The Impact Outside the École	402
2.5.3. The First Overt Criticism Back at the École:	
Poinsot in 1815	408
3. Retour to Synthèse for the Negative Numbers	410
3. 1. Lacroix Propagates the Absurdité of the Negative	410
3.1.1in Algebra	411
3.1.2 in the Application of Algebra to Geometry	416
3.2. The Criticisms of Gergonne and Ampère	420
3.3. A Further Look at England	426
VI. Cauchy's Compromise Concept	427
1. Cauchy: Engineer, Scientist, and Poltically Active Catholic	427
2. Conflicting Reception of Cauchy in the History of	
Mathematics	431
3. Methodological Approaches to Analyzing Cauchy's Work	433
4. Effects of the Context	436
5. The Context of Cauchy's Scientific Context: "I'm Far from	
Believing Myself Infallible"	441
6. Cauchy's Basic Concepts	445
6.1. The Number Concept	446
6.2. The Variable	450
6.3. The Function Concept	451
6.4. The Limit and the Infiniment Petit	452
6.5. Continuity	457
6.6. Convergence	466
6.7. Introduction of the Definite Integral	477
6.8. Some Final Comments	480

XII Contents	
VII. Development of Pure Mathematics in Prussia/Germany	481
1. Summary and Transition: Change of Paradigm	481
2. The Context of Pure Mathematics: The University Model in the	
Protestant Neohumanist System	483
3. Negative Numbers: Advances in Algebra in Germany	486
3.1. Algebraization and Initial Reactions to Carnot	
H. D. Wilckens (1800)	486
F.G. Busse (1798, 1801, 1804)	488
J.F. Fries (1810)	493
3.2. The Conceptual-Structural Approach of W.A.	
Förstemann	495
On Förstemann's Biography	496
His 1817 Work	498
3.3. Reception Between Refutation and Adaptation	505
M. Metternich	505
J.P.W. Stein	510
W. A. Diesterweg and His Students	516
Martin Ohm	521
3.4. The Continued Dominance of the Quantity Concept	525
4. The "Berlin Discussion" of Continuity	534
5. The Advance of Pure Mathematics	540
5.1. Summary of Dirksen's Work	541
5.1.1. Number	542
5.1.2. Series	544
5.1.3. Theory of Functions	548
5.2. Dirichlet's Work on Rigor	558
5.3. The Reception of Pure Mathematics in Textbook Practice	561
VIII. Conflicts Between Confinement to Geometry and	
Algebraization in France	567
1. Keeping Up the Confinement of Negative Quantities to	
Geometry	567
2. Last Culmination Points of the Infiniment Petits	574
2.1. Poisson's Universalization of the Infiniment Petits	574
2.2. The Apotheosis of the Dualist Compromise: Duhamel	587
2.2.1. The Principle of Substitution for Infiniment Petits	590

C	ontents XIII
2.3. The End of the Classical Infiniment Petits	598
IX. Summary and Outlook	601
1. Principle of Permanence and Theory of Forms	601
2. On the New Rigor in Analysis	606
3. On the Rise of Modern Infiniment Petits	609
4. Some Closing Remarks	616
Appendix	619
A. The Berlin Contest of 1784 Reassessed	619
B. Carnot's Definitions of Quantités Infiniment Petites	620
Part I	620
Part II	621
Part III	622
Part IV	623
C. Calendar of Cauchy's Traceable Correspondence	624
References	631
Sources	631
Publications	632
Index of Names	671