Dedication	iii
Preface	xix
Acknowledgments	xxi
1. INTRODUCTION	1
1.1 Driver Assistance Systems	2
1.2 Active Stability Control Systems	2
1.3 Ride Quality	4
1.4 Technologies for Addressing Traffic Congestion	5
1.4.1 Automated highway systems	6
1.4.2 Traffic friendly adaptive cruise control	6
1.4.3 Narrow tilt-controlled comuuter vehicles	7
1.5 Emissions and Fuel Economy	9
1.5.1 Hybrid electric vehicles	10
1.5.2 Fuel cell vehicles	11

References	11
2. LATERAL VEHICLE DYNAMICS	15
2.1 Lateral Systems Under Commercial Development	15
2.1.1 Lane departure warning	16
2.1.2 Lane keeping systems	17
2.1.3 Yaw stability control systems	18
2.2 Kinematic Model of Lateral Vehicle Motion	20
2.3 Bicycle Model of Lateral Vehicle Dynamics	27
2.4 Motion of Particle Relative to a rotating Frame	33
2.5 Dynamic Model in Terms of Error with Respect to Road	35
2.6 Dynamic Model in Terms of Yaw Rate and Slip Angle	39
2.7 From Body-Fixed to Global Coordinates	41
2.8 Road Model	43
2.9 Chapter Summary	46
Nomenclature	47
References	48
3. STEERING CONTROL FOR AUTOMATED LANE KEEPING	-
3.1 State Feedback	51
3.2 Steady State Error from Dynamic Equations	55
3.3 Understanding Steady State Cornering	59
3.3.1 Steering angle for steady state cornering	59
3.3.2 Can the yaw angle error be zero?	64

3.3.3 Is non-zero yaw error a concern?	65
3.4 Consideration of Varying Longitudinal Velocity	66
3.5 Output Feedback	68
3.6 Unity feedback Loop System	70
3.7 Loop Analysis with a Proportional Controller	72
3.8 Loop Analysis with a Lead Compensator	79
3.9 Simulation of Performance with Lead Compensator	83
3.10 Analysis if Closed-Loop Performance	84
3.10.1 Performance variation with vehicle speed	84
3.10.2 Performance variation with sensor location	86
3.11 Compensator Design with Look-Ahead Sensor Measurement	88
3.12 Chapter Summary	90
Nomenclature	90
References	92
4. LONGITUDINAL VEHICLE DYNAMICS	95
4.1 Longitudinal Vehicle Dynamics	95
4.1.1 Aerodynamic drag force	97
4.1.2 Longitudinal tire force	99
4.1.3 Why does longitudinal tire force depend on slip?	101
4.1.4 Rolling resistance	104
4.1.5 Calculation of normal tire forces	106
4.1.6 Calculation of effective tire radius	108

4.2 Driveline Dynamics	111	
4.2.1 Torque converter	112	
4.2.2 Transmission dynamics	114	
4.2.3 Engine dynamics	116	
4.2.4 Wheel dynamics	118	
4.3 Chapter Summary	120	
Nomenclature	120	
References	122	
5. INTRODUCTION TO LONGITUDINAL CONTROL		
5.1 Introduction	123	
5.1.1 Adaptive cruise control	124	
5.1.2 Collision avoidance	125	
5.1.3 Automated highway systems	125	
5.2 Benefits of Longitudinal Automation	126	
5.3 Cruise Control	128	
5.4 Upper Level Controller for Cruise Control	130	
5.5 Lower Level for Cruise Control	133	
5.5.1 Engine torque calculation for desired acceleration	134	
5.5.2 Engine control	137	
5.6 Anti-Lock Brake Systems	137	
5.6.1 Motivation	137	
5.6.2 ABS functions	141	

5.6.3 Deceleration threshold based algorithms	142
5.6.4 Other logic based ABS control systems	146
5.6.5 Recent research publications on ABS	148
5.7 Chapter Summary	148
Nomenclature	149
References	150
6. ADAPTIVE CRUISE CONTROL	153
6.1 Introduction	153
6.2 Vehicle Following Specifications	155
6.3 Control Architecture	156
6.4 String Stability	158
6.5 Autonomous Control with Constant Spacing	159
6.6 Autonomous Control with the Constant Time-Gap Policy	162
6.6.1 String stability of the CTG spacing policy	164
6.6.2 Typical delay values	167
6.7 Transitional Trajectories	169
6.7.1 The need for a transitional controller	169
6.7.2 Transitional controller design through $R - \dot{R}$ diagram	ns 172
6.8 Lower Level Controller	178
6.9 Chapter Summary	180
Nomenclature	180
References	181

Appendix 6.A	183
7. LONGITUDINAL CONTROL FOR VEHICLE PLATOON	IS 187
7.1 Automated Highway Systems	187
7.2 Vehicle Control on Automated Highway Systems	188
7.3 Longitudinal Control Architecture	189
7.4 Vehicle Following Specifications	191
7.5 Background on Norms of Signals and Systems	193
7.5.1 Norms of signals	193
7.5.2 System norms	194
7.5.3 Use of system norms to study signal amplificat	ion 195
7.6 Design Approach for Ensuring String Stability	198
7.7 Constant Spacing with Autonomous Control	200
7.8 Constant Spacing with Wireless Communication	203
7.9 Experimental Results	206
7.10 Lower Level Controller	208
7.11 Adaptive Controller for Unknown Vehicle Parameters	s 209
7.11.1 Redefined notation	209
7.11.2 Adaptive controller	211
7.12 Chapter Summary	214
Nomenclature	215
References	216
Appendix 7.A	218

8. ELECTRONIC STABILITY CONTROL		
8.1 Introduction		
8.1.1 The functioning of a stability control system	221	
8.1.2 Systems developed by automotive manufacturers	223	
8.1.3 Types of stability control systems	223	
8.2 Differential Braking Systems	224	
8.2.1 Vehicle model	224	
8.2.2 Control architecture	229	
8.2.3 Desired yaw rate	230	
8.2.4 Desired side-slip angle	231	
8.2.5 Upper bounded values of target yaw rate and slip angle	233	
8.2.6 Upper controller design	235	
8.2.7 Lower Controller design	238	
8.3 Steer-By-Wire Systems	240	
8.3.1 Introduction	240	
8.3.2 Choice of output for decoupling	241	
8.3.3 Controller design	244	
8.4 Independent All Wheel Drive Torque Distribution	247	
8.4.1 Traditional four wheel drive systems	247	
8.4.2 Torque transfer between left and right wheels	248	
8.4.3 Active control of torque transfer to all wheels	249	
8.5 Chapter Summary	251	

xi

	Nomeclature	252
	References	255
9.	MEAN VALUE MODELING OF SI AND DIESEL ENGINES	257
	9.1 SI Engine Model Using Parametric Equations	258
	9.1.1 Engine rotational dynamics	259
	9.1.2 Indicated combustion torque	260
	9.1.3 Friction and pumping losses	261
	9.1.4 Manifold pressure equation	262
	9.1.5 Outflow rate from intake manifold	263
	9.1.6 Inflow rate into intake manifold	263
	9.2 SI Engine Model Using Look-Up Maps	265
	9.2.1 Introduction to engine maps	266
	9.2.2 Second order engine model using engine maps	270
	9.2.3 First order engine model using engine maps	271
	9.3 Introduction to Turbocharged Diesel Engine Maps	273
	9.4 Mean Value Modeling of Turbocharged Diesel Engines	274
	9.4.1 Intake manifold dynamics	275
	9.4.2 Exhaust manifold dynamics	275
	9.4.3 Turbocharger dynamics	276
	9.4.4 Engine crankshaft dynamics	277
	9.4.5 Control system objectives	278
	9.5 Lower Level Controller with SI Engines	279

	9.6	Chapter Summary	281
	Nom	nenclature	282
	Refe	rences	284
10.		IGN AND ANALYSIS OF PASSIVE AUTOMOTIVE PENSIONS	287
	10.1	Introduction to Automotive Suspensions	287
		10.1.1 Full, half and quarter car suspension models	287
		10.1.2 Suspension functions	289
		10.1.3 Dependent and independent suspensions	291
	10.2	Modal Decoupling	293
	10.3	Performance Variables for a Quarter Car Suspension	295
	10.4	Natural Frequencies and Mode Shapes for the Quarter Car	297
	10.5	Approximate Transfer Functions Using Decoupling	299
	10.6	Analysis of Vibrations in the Sprung Mass Mode	305
	10.7	Analysis of Vibrations in the Unsprung Mass Mode	307
	10.8	Verification Using the Complete Quarter Model	308
		10.8.1 Verification of the influence of suspension stiffness	308
		10.8.2 Verification of the influence of suspension damping	310
		10.8.3 Verification of the influence of tire stiffness	313
	10.9	Half-Car and Full-Car Suspension Models	315
	10.1	0 Chapter Summary	321
	Nom	enclature	322
	Refe	rences	323

xiii

11. ACTIVE AUTOMOTIVE SUSPENSIONS	325
11.1 Introduction	325
11.2 Active Control: Trade-Offs and Limitations	328
11.2.1 Transfer functions of interest	328
11.2.2 Use of the LQR Formulation and its relation to H_2 Optimal Control	328
11.2.3 LQR formulation for active suspension design	330
11.2.4 Performance studies of the LQR controller	332
11.3 Active System Asymptotes	339
11.4 Invariant Points and Their Influence on the Suspension	
Problem	341
11.5 Analysis of Trade-Offs Using Invariant Points	343
11.5.1 Ride quality/ road holding trade-offs	344
11.5.2 Ride quality/ rattle space trade-offs	345
11.6 Conclusions on Achievable Active System Performance	346
11.7 Performance of a Simple Velocity Feedback Controller	348
11.8 Hydraulic Actuators for Active Suspensions	350
11.9 Chapter Summary	352
Nomenclature	353
References	354
12. SEMI-ACTIVE SUSPENSIONS	357
12.1 Introduction	357
12.2 Semi-Active Suspension Model	359

	12.3	Theoretical Results: Optimal Semi-Active Suspensions	362
		12.3.1 Problem formulation	362
		12.3.2 Problem definition	364
		12.3.3 Optimal solution with no constraints on damping	365
		12.3.4 Optimal solution in the presence of constraints	368
	12.4	Interpretation of the Optimal Semi-Active Control Law	369
	12.5	Simulation Results	372
	12.6	Calculation of Transfer Function Plots with Semi-Active Suspensions	375
	12.7	Performance of Semi-Active Suspension Systems	378
		12.7.1 Moderately weighted ride quality	378
		12.7.2 Sky hook damping	380
	12.8	Chapter Summary	383
	Nom	nenclature	383
	Refe	rences	384
13.	LAT	ERAL AND LONGITUDINAL TIRE FORCES	387
	13.1	Tire Forces	387
	13.2	Tire Structure	390
	13.3	Longitudinal Tire Force at Small Slip Ratios	391
	13.4	Lateral Tire Force at Small Slip Angles	395
	13.5	Introduction to the Magic Formula Tire Model	398
	13.6	Development of Lateral Tire Model for Uniform Normal	
		Force Distribution	400

	13.6.1 Lateral forces at small slip angles	402
	13.6.2 Lateral forces at large slip angles	405
	13.7 Development of Lateral Tire Model for Parabolic Normal Pressure Distribution	409
	13.8 Combined Lateral and Longitudinal Tire Force Generation	417
	13.9 The Magic Formula Tire Model	421
	13.10 Dugoff's Tire Model	425
	13.10.1 Introduction	425
	13.10.2 Model equations	426
	13.10.3 Friction Circle Interpretation of Dugoff's Model	427
	13.11 Dynamic Tire Model	429
	13.12 Chapter Summary	430
	Nomenclature	430
	References	432
14.	TIRE-ROAD FRICTION MEASUREMENT ON HIGHWAY VEHICLES	433
	14.1 Introduction	433
	14.1.1 Definition of tire-road friction coefficient	433
	14.1.2 Benefits of tire-road friction estimation	434
	14.1.3 Review of results on tire-road friction coefficient estimation	435
	14.1.4 Review of results on slip-slope based approach to fric estimation	tion 436
	14.2 Longitudinal Vehicle Dynamics and Tire Model for Friction Estimation	438

		14.2.1	Vehicle longitudinal dynamics	438
		14.2.2	Determination of the normal force	439
		14.2.3	Tire model	440
		14.2.4	Friction coefficient estimation for both traction	
			and braking	442
	14.3	Summ	ary of Longitudinal Friction identification Approach	446
	14.4	Identification Algorithm Design		
		14.4.1	Recursive least-squares (RLS) identification	447
		14.4.2	RLS with gain switching	449
		14.4.3	Conditions for parameter updates	450
	14.5 Estimation of Accelerometer Bias			451
	14.6	Experi	mental Results	454
		14.6.1	System hardware and software	454
		14.6.2	Tests on dry concrete surface	455
		14.6.3	Tests on concrete surface with loose snow covering	457
		14.6.4	Tests on surface consisting of two different friction	
			levels	459
		14.6.5	Hard braking test	460
	14.7 Chapter Summary Nomenclature			461
				462
	References			464
Index				46