CONTENTS

Every chapter has sections devoted to: notation, behavior, definitions, special cases, intrarelationships, expansions, particular values, numerical values, limits and approximations, operations of the calculus, complex argument, generalizations, and cognate functions. In addition, each chapter has the special features itemized below its title.

PREFACE	v
GENERAL CONSIDERATIONS What functions are. Organization of the <i>Atlas</i> . Notational conventions. Rules of the calculus.	1
THE CONSTANT FUNCTION <i>c</i> Mathematical constants. Complex numbers. Pulse functions. Series of powers of natural numbers.	13
THE FACTORIAL FUNCTION <i>n</i> ! Double and triple factorial functions. Combinatorics. Stirling numbers of the second kind.	21
THE ZETA NUMBERS AND RELATED FUNCTIONS Special values. Apéry's constant. The Debye functions of classical physics.	29
THE BERNOULLI NUMBERS B_n Dual definitions. Relationship to zeta numbers. The Euler-Maclaurin sum formulas.	39
THE EULER NUMBERS E_n Relationship to beta numbers and Bernoulli numbers.	45
THE BINOMIAL COEFFICIENTS $\binom{v}{m}$ Binomial expansion. Pascal's triangle. The Laplace-de Moivre formula. Multinomial coefficients.	49
THE LINEAR FUNCTION $bx + c$ AND ITS RECIPROCAL How to fit data to a "best straight line". Errors attaching to the fitted parameters.	57
	PREFACE GENERAL CONSIDERATIONS What functions are. Organization of the Atlas. Notational conventions. Rules of the calculus. THE CONSTANT FUNCTION c Mathematical constants. Complex numbers. Pulse functions. Series of powers of natural numbers. THE FACTORIAL FUNCTION $n!$ Double and triple factorial functions. Combinatorics. Stirling numbers of the second kind. THE ZETA NUMBERS AND RELATED FUNCTIONS Special values. Apéry's constant. The Debye functions of classical physics. THE BERNOULLI NUMBERS B_n Dual definitions. Relationship to zeta numbers. The Euler-Maclaurin sum formulas. THE EULER NUMBERS E_n Relationship to beta numbers and Bernoulli numbers. THE BINOMIAL COEFFICIENTS $\binom{v}{m}$ Binomial expansion. Pascal's triangle. The Laplace-de Moivre formula. Multinomial coefficients. THE LINEAR FUNCTION $bx + c$ AND ITS RECIPROCAL How to fit data to a "best straight line". Errors attaching to the fitted parameters.

CONTENTS

8	MODIFYING FUNCTIONS Selecting features of numbers. Rounding. Base conversion.	67
9	THE HEAVISIDE $u(x-a)$ AND DIRAC $\delta(x-a)$ FUNCTIONS Window and other discontinuous functions. The comb function. Green's functions.	75
10	THE INTEGER POWERS x^n AND $(bx + c)^n$ Summing power series. Euler transformation. Transformations through lozenge diagrams.	81
11	THE SQUARE-ROOT FUNCTION $\sqrt{bx+c}$ AND ITS RECIPROCAL Behavior of the semiparabolic function in the complex plane. The parabola and its geometry.	95
12	THE NONINTEGER POWER x^{ν} Behavior in four quadrants. Mellin transforms. De Moivre's theorem. The fractional calculus.	103
13	THE SEMIELLIPTIC FUNCTION $(b/a)\sqrt{a^2 - x^2}$ AND ITS RECIPROCAL Ellipticity. Geometric properties of the ellipse, ellipsoid, and semicircle. Superellipses.	113
14	THE $(b/a)\sqrt{x^2 \pm a^2}$ FUNCTIONS AND THEIR RECIPROCALS Vertical, horizontal and diagonal varieties of hyperbolas. Operations that interrelate functions graphically.	121
15	THE QUADRATIC FUNCTION $ax^2 + bx + c$ AND ITS RECIPROCAL Zeros, real and complex. The root-quadratic function. Conic sections. Trajectory of a projectile.	131
16	THE CUBIC FUNCTION $x^3 + ax^2 + bx + c$ Zeros of cubics and quartics. "Joining the dots" with sliding cubics and cubic splines.	139
17	POLYNOMIAL FUNCTIONS Finding zeros. Rational functions. Partial fractions. Polynomial optimization and regression.	147
18	THE POCHHAMMER POLYNOMIALS $(x)_n$ Stirling numbers of the first kind. Hypergeometric functions.	159
19	THE BERNOULLI POLYNOMIALS $B_n(x)$ Sums of monotonic power series.	175
20	THE EULER POLYNOMIALS $E_n(x)$ Sums of alternating power series.	181
21	THE LEGENDRE POLYNOMIALS $P_n(x)$ Orthogonality. The Legendre differential equation and its other solution, the $Q_n(x)$ function.	187
22	THE CHEBYSHEV POLYNOMIALS $T_n(x)$ AND $U_n(x)$ Gegenbauer and Jacobi polynomials. Fitting data sets with discrete Chebyshev polynomials.	197
23	THE LAGUERRE POLYNOMIALS $L_n(x)$ Associated Laguerre polynomials. Fibonacci numbers and the golden section.	209

	CONTENTS	ix
24	THE HERMITE POLYNOMIALS $H_n(x)$ Gauss integration. The systematic solution of second-order differential equations.	217
25	THE LOGARITHMIC FUNCTION $ln(x)$ Logarithms to various bases. The dilogarithm and polylogarithms. Logarithmic integral.	229
26	THE EXPONENTIAL FUNCTION $exp(\pm x)$ Exponential growth/decay. Self-exponential function. Exponential polynomial. Laplace transforms.	241
27	EXPONENTIAL OF POWERS $exp(\pm x^{\nu})$ Exponential theta functions. Various distributions; their probability and cumulative versions.	255
28	THE HYPERBOLIC COSINE $cosh(x)$ AND SINE $sinh(x)$ FUNCTIONS Algebraic and geometric interpretations. The catenary.	269
29	THE HYPERBOLIC SECANT AND COSECANT FUNCTIONS Interrelations between hyperbolic functions via similar triangles. Interesting inverse Laplace transformations.	281
30	THE HYPERBOLIC TANGENT AND COTANGENT FUNCTIONS The Langevin function, important in the theory of electrical or magnetic dipoles.	289
31	THE INVERSE HYPERBOLIC FUNCTIONS Synthesis from reciprocal linear functions. Logarithmic equivalence. Expansion as hypergeometric functions.	297
32	THE COSINE $cos(x)$ AND SINE $sin(x)$ FUNCTIONS Sinusoids. Periodicity, frequency, phase and amplitude. Fourier transforms. Clausen's integral.	309
33	THE SECANT $sec(x)$ AND COSECANT $csc(x)$ FUNCTIONS Interrelationships between circular functions via similar triangles. The Gudermannian function and its inverse.	329
34	THE TANGENT $tan(x)$ AND COTANGENT $cot(x)$ FUNCTIONS Tangent and cotangent roots. Utility of half-argument formulas. Rules of trigonometry.	339
35	THE INVERSE CIRCULAR FUNCTIONS Synthesis from reciprocal linear functions. Two-dimensional coordinate systems and scale factors.	351
36	PERIODIC FUNCTIONS Expansions in sines and cosines. Euler's formula and Parseval's relationship. Waveforms.	367
37	THE EXPONENTIAL INTEGRALS $Ei(x)$ AND $Ein(x)$ Cauchy limits. Functions defined as indefinite integrals. Table of popular integrals.	375
38	SINE AND COSINE INTEGRALS Entire cosine versions. Auxiliary sine and cosine integrals.	385
39	THE FRESNEL INTEGRALS $C(x)$ AND $S(x)$ Böhmer integrals. Auxiliary Fresnel integrals. Curvatures and lengths of plane curves. Cornu's spiral.	395

CONTENTS

40	THE ERROR FUNCTION $erf(x)$ AND ITS COMPLEMENT $erfc(x)$ Inverse error function. Repeated integrals. Normal probability. Random numbers. Monte Carlo.	405
41	THE $\exp(x)\operatorname{erfc}(\sqrt{x})$ AND RELATED FUNCTIONS Properties in the complex plane and the Voigt function.	417
42	DAWSON'S INTEGRAL daw(x) The closely related erfi function. Intermediacy to exponentials. Gaussian integrals of complex argument.	427
43	THE GAMMA FUNCTION $\Gamma(v)$ Gauss-Legendre formula. Complete beta function. Function synthesis and basis hypergeometric functions.	435
44	THE DIGAMMA FUNCTION $\psi(v)$ Polygamma functions. Bateman's G function and its derivatives. Sums of reciprocal linear functions.	449
45	THE INCOMPLETE GAMMA FUNCTIONS The Mittag-Leffler, or generalized exponential, function.	461
46	THE PARABOLIC CYLINDER FUNCTION $D_{\nu}(x)$ Three-dimensional coordinate systems. The Laplacian, separability, and an exemplary application.	471
47	THE KUMMER FUNCTION $M(a, c, x)$ The confluent hypergeometric differential equation. Kummer's transformation. Zeros.	485
48	THE TRICOMI FUNCTION $U(a, c, x)$ Numbers of zeros and extrema. The two Whittaker functions. Bateman's confluent function.	497
49	THE MODIFIED BESSEL FUNCTIONS $I_n(x)$ OF INTEGER ORDER Bessel's modified differential equation. Cylinder functions generally and their classification.	507
50	THE MODIFIED BESSEL FUNCTION $I_{\nu}(x)$ OF ARBITRARY ORDER Simplifications when the order is a multiple of $\frac{1}{2}$, $\frac{1}{3}$, or $\frac{1}{4}$. Auxiliary cylinder functions.	519
51	THE MACDONALD FUNCTION $K_{\nu}(x)$ Alternative solutions to Bessel's modified differential equation. Spherical Macdonald functions.	527
52	THE BESSEL FUNCTIONS $J_n(x)$ OF INTEGER ORDER Zeros, extrema, and their associated values. Miller's method. The Newton-Raphson root-finding method.	537
53	THE BESSEL FUNCTION $J_{\nu}(x)$ OF ARBITRARY ORDER The Bessel-Clifford equation. Hankel transforms. Neumann series. Discontinuous Bessel integrals.	553
54	THE NEUMANN FUNCTION $Y_v(x)$ Behavior close to zero argument. Hankel functions. Asymptotic expansions of cylinder functions.	567
55	THE KELVIN FUNCTIONS Complex-plane relationships to Bessel functions.	577

	CONTENTS	xi
56	THE AIRY FUNCTIONS $Ai(x)$ AND $Bi(x)$ Hyperbolic/circular chimera. Airy's differential equation. Auxiliary Airy functions. Airy derivatives.	585
57	THE STRUVE FUNCTION $h_{\nu}(x)$ Kinship with Neumann functions. The modified Struve function.	593
58	THE INCOMPLETE BETA FUNCTION $B(v,\mu,x)$ Role as a hypergeometric function. Integrals of circular and hyperbolic functions raised to an arbitrary power.	603
59	THE LEGENDRE FUNCTIONS $P_{\nu}(x)$ AND $Q_{\nu}(x)$ The associated Legendre functions. Solving the Laplace equation in spherical coordinates.	611
60	THE GAUSS HYPERGEOMETRIC FUNCTION $F(a,b,c,x)$ Plethora of special cases. Contiguity relationships. Linear transformations.	627
61	THE COMPLETE ELLIPTIC INTEGRALS $K(k)$ AND $E(k)$ The third kind of complete elliptic integral. Means. The elliptic nome. Theta functions of various kinds.	637
62	THE INCOMPLETE ELLIPTIC INTEGRALS $F(k,\varphi)$ AND $E(k,\varphi)$ The Landen transformations. $\Pi(v,k,\varphi)$. Integrals of reciprocal cubic functions. Romberg integration.	653
63	THE JACOBIAN ELLIPTIC FUNCTIONS Trigonometric interpretation. Circular/hyperbolic intermediacy. Double periodicity in the complex plane.	671
64	THE HURWITZ FUNCTION $\zeta(v,u)$ Bivariate eta function. The Lerch function. Weyl differintegration and its application to periodic functions.	685
	APPENDIX A: USEFUL DATA SI units and prefixes. Universal constants. Terrestrial constants and standards. The Greek alphabet.	697
	APPENDIX B: BIBLIOGRAPHY Cited sources and supporting publications. Books and web sources but not original research articles.	703
	APPENDIX C: EQUATOR, THE ATLAS FUNCTION CALCULATOR Disk installation. Basic operations and additional features. Input/output formats. Accuracy. Keywords.	705
	SYMBOL INDEX Notation used here and elsewhere.	723
	SUBJECT INDEX A comprehensive directory to the topics in this <i>Atlas</i> .	735