Contents

Preface List of Figures			xi
			xiii
\mathbf{Li}	List of Tables		
1.	Introducing Optimization		1
	1.1	A tank design problem	1
	1.2	Least squares data-fitting	3
	1.3	A routing problem	7
2.	One-variable Optimization		11
	2.1	Optimality conditions	11
	2.2	The bisection method	12
	2.3	The secant method	16
	2.4	The Newton method	18
	2.5	Sample applications and results	24
3.	Applications in n Variables		33
	3.1	Data-fitting problems	33
	3.2	The routing problem	36
	3.3	An optimal control problem	38
4.	<i>n</i> -Variable Unconstrained Optimization		41
	4.1	Optimality conditions	41
	4.2	Visualising problems in several variables	43
	4.3	Optimization software and test problems	45
5.	Direct Search Methods		53
	5.1	Univariate search	53

	5.2	The Nelder and Mead simplex method	55
	5.3	DIRECT	58
	5.4	Results with direct search methods	60
6.	Con	nputing Derivatives	63
	6.1	Hand-crafted derivatives	63
	6.2	Finite difference estimates of derivatives	66
	6.3	Automatic differentiation	68
	6.4	Computational costs of derivatives	72
7.	The	Steepest Descent Method	75
	7.1	Introduction	75
	7.2	Line searches	76
	7.3	Convergence of the steepest descent method	78
	7.4	Results with steepest descent	81
8.	Wea	k Line Searches and Convergence	83
	8.1	Wolfe's convergence theorem	83
	8.2	The Armijo line search	86
	8.3	Further results with steepest descent	87
9.	New	ton and Newton-like Methods	91
	9.1	Quadratic models and the Newton step	91
	9.2	Newton method advantages and drawbacks	96
	9.3	Search directions from indefinite Hessians	97
	9.4	Results with the Newton method	100
	9.5	The Gauss–Newton method	103
	9.6	Results with the Gauss–Newton method	105
10	. Qua	si-Newton Methods	107
	10.1	Approximate second-derivative information	107
	10.2	Rank-two updates for the inverse Hessian	108
	10.3	Convergence of quasi-Newton methods	112
	10.4	Results with quasi-Newton methods	113
	10.5	Some further updating formulae	115
11	. Con	jugate Gradient Methods	119
	11.1	Conjugate gradients for a quadratic $Q(x)$	119
	11.2	Conjugate gradients and general functions	124

11.3 Convergence of conjugate gradient methods	126
11.4 Results with conjugate gradients	127
11.5 The truncated Newton method	129
12. A Summary of Unconstrained Methods	131
13. Optimization with Restrictions	133
13.1 Excluding negative variables	133
13.2 The preventive maintenance problem	135
14. Larger-Scale Problems	141
14.1 Control problems with many time steps	141
14.2 Overhead costs and runtimes	143
15. Global Unconstrained Optimization	147
15.1 Multistart methods	148
15.2 Global solution of routing problems	149
15.3 Global solution of a feed-blending problem	150
15.4 Global solution of a sensitivity problem	153
16. Equality Constrained Optimization	155
16.1 Problems with equality constraints	155
16.2 Optimality conditions	158
16.3 A worked example	161
16.4 Interpretation of Lagrange multipliers	162
16.5 Some example problems	164
17. Linear Equality Constraints	
17.1 Quadratic programming	169
17.2 Sample EQP solutions	170
17.3 Reduced-gradient methods	172
17.4 Results with a reduced-gradient method	179
17.5 Projected-gradient methods	180
18. Penalty Function Methods	183
18.1 Introduction	183
18.2 Penalty functions	185
18.3 The augmented Lagrangian	189
18.4 Results with P-SUMT and AL-SUMT	192

18.5 Exact penalty functions	195
19. Sequential Quadratic Programming	197
19.1 Quadratic/linear models	197
19.2 SQP methods based on penalty functions	200
19.3 Results with AL-SQP	205
$19.4~{\rm SQP}$ line searches and the Maratos effect	208
20. Inequality Constrained Optimization	211
20.1 Problems with inequality constraints	211
20.2 Optimality conditions	216
20.3 Transforming inequalities to equalities	220
20.4 Transforming inequalities to simple bounds	221
20.5 Example problems	221
21. Extending Equality Constraint Methods	225
21.1 Quadratic programming with inequalities	225
21.2 Reduced-gradients for inequality constraints	229
21.3 Penalty functions for inequality constraints	231
21.4 AL-SUMT for inequality constraints	233
21.5 SQP for inequality constraints	234
21.6 Results with P-SUMT, AL-SUMT and AL-SQP $$	235
22. Barrier Function Methods	239
22.1 Problems with inequality constraints only	239
22.2 Barrier functions	241
22.3 Results with B-SUMT	244
23. Interior Point Methods	249
23.1 Forming the transformed problem B-NLP	249
23.2 Approximate solutions of Problem B-NLP	250
23.3 An interior point algorithm	254
23.4 Results with IPM	256
24. A Summary of Constrained Methods	259
25. The OPTIMA Software	261
25.1 Accessing OPTIMA	261
25.2 Running OPTIMA	262

Contents	
25.3 Modifying and creating test problems	262
25.4 Modifying optimization methods	271
References	273
Index	277