Contents

Foreword v
Preface vii
I VECTOR CALCULUS 1
1 Introduction and Basic Definitions 2
2 The Scalar Product 5
3 Component Representation of a Vector 9
4 The Vector Product (Axial Vector) 13
5 The Triple Scalar Product 25
6 Application of Vector Calculus 27
Application in mathematics: 27
Application in physics: 31
7 Differentiation and Integration of Vectors 39
8 The Moving Trihedral (Accompanying Dreibein)—the Frenet Formulas 49
Examples on Frenet's formulas: 55
9 Surfaces in Space 64
10 Coordinate Frames 68
11 Vector Differential Operations 83
The operations gradient, divergence, and curl (rotation) 83
Differential operators in arbitrary general (curvilinear) coordinates 96
12 Determination of Line Integrals 109
13 The Integral Laws of Gauss and Stokes 112
Gauss Law: 112
The Gauss theorem: 114
Geometric interpretation of the Gauss theorem: 115
Stokes law: 117
14 Calculation of Surface Integrals 125
15 Volume (Space) Integrals 130
II NEWTONIAN MECHANICS 133
16 Newton's Axioms 134
17 Basic Concepts of Mechanics 140
Inertial systems 140
Measurement of masses 141
Work 141
Kinetic energy 142
Conservative forces 142
Potential 143
Energy law 144
Equivalence of impulse of force and momentum change 144
Angular momentum and torque 149
Conservation law of angular momentum 150
Law of conservation of the linear momentum 150
Summary 150
The law of areas 151
Conservation of orientation 151
18 The General Linear Motion 159
19 The Free Fall 163
Vertical throw 164
Inclined throw 166
20 Friction 172
Friction phenomena in a viscous medium 172
Motion in a viscous medium with Newtonian friction 177
Generalized ansatz for friction: 179
21 The Harmonic Oscillator 196
22 Mathematical Interlude-Series Expansion, Euler's Formulas 210
23 The Damped Harmonic Oscillator 214
24 The Pendulum 229
25 Mathematical Interlude: Differential Equations 241
26 Planetary Motions 246
27 Special Problems in Central Fields 282
The gravitational field of extended bodies 282
The attractive force of a spherical mass shell 283
The gravitational potential of a spherical shell covered with mass 285
Stability of circular orbits 289
28 The Earth and our Solar System 295
General notions of astronomy 295
Determination of astronomic quantities 296
Properties, position, and evolution of the solar system 308
World views 315
On the evolution of the universe 325
Dark Matter 330
What is the nature of the dark matter? 338
III THEORY OF RELATIVITY 361
29 Relativity Principle and Michelson-Morley Experiment 362
The Michelson-Morley experiment 364
30 The Lorentz Transformation 370
Rotation of a three-dimensional coordinate frame 372
The Minkowski space 374
Group property of the Lorentz transformation 383
31 Properties of the Lorentz transformation 389
Time dilatation 389
Lorentz-Fitzgerald length contraction 394
Note on the invisibility of the Lorentz-Fitzgerald length contraction 396
The visible appearance of quickly moving bodies 398
Optical appearance of a quickly moving cube 398
Optical appearance of bodies moving with almost the speed of light 400
Light intensity distribution of a moving isotropic emitter 404
Doppler shift of quickly moving bodies 407
Relativistic space-time structure-space-time events 412
Relativistic past, present, future 413
The causality principle 414
The Lorentz transformation in the two-dimensional subspace of the Minkowski space 415
32 Addition Theorem of the Velocities 419
Supervelocity of light, phase, and group velocity 421

33 The Basic Quantities of Mechanics in Minkowski Space
 425

Lorentz scalars 426
Four-velocity in Minkowski space 427
Momentum in Minkowski space 428
Minkowski force (four-force) 428
Kinetic energy 433
The Tachyon hypothesis 442
Derivation of the energy law in the Minkowski space 444
The fourth momentum component 445
Conservation of momentum and energy for a free particle 446
Relativistic energy for free particles 446
Examples on the equivalence of mass and energy 448
34 Applications of the Special Theory of Relativity 461
The elastic collision 461
Compton scattering 465
The inelastic collision 468
Decay of an unstable particle 470
Index 485

