Contents

1	Inti	roduction			
	1.1	Solution Methods for Wave Propagation Problems			
	1.2	Fourier Analysis			
		1.2.1 Continuous Fourier Transforms			
		1.2.2 Fourier Series			
		1.2.3 Discrete Fourier Transform 12			
	1.3	Spectral Analysis 15			
	1.4	What is the Spectral Element Method? 19			
	1.5	Outline and Scope of Book 2			
2	Introduction to the Theory of Anisotropic and				
	Inh	omogeneous Materials			
	2.1	Introduction to Composite Materials			
	2.2	Theory of Laminated Composites			
		2.2.1 Micromechanical Analysis of a Lamina 28			
		2.2.2 Strength of Materials Approach to Determination of			
		Elastic Moduli 28			
		2.2.3 Stress–Strain Relations for a Lamina 29			
		2.2.4 Stress–Strain Relation for a Lamina with Arbitrary			
		Orientation of Fibers 31			
	2.3	Introduction to Smart Composites 34			
	2.4	Modeling Inhomogeneous Materials 38			
3	Ide	alization of Wave Propagation and Solution Techniques. 4			
	3.1	General Form of the Wave Equations 41			
	3.2	Characteristics of Waves in Anisotropic Media 42			
	3.3	General Form of Inhomogeneous Wave Equations 43			
	3.4	Basic Properties and Solution Techniques 43			
	3.5	Spectral Finite Element Discretization 44			
	3.6	Efficient Computation of the Wavenumber and Wave Amplitude 48			

		3.6.1	Method 1: The Companion Matrix and the SVD	
			Technique	. 49
	0.7	3.6.2	Method 2: Linearization of PEP	. 50
	3.7	Spect	ral Element Formulation for Isotropic Material	. 51
		3.7.1	Spectral Element for Rods	. 51 52
		3.1.2	Spectral Element for Beams	. 55
4	Wa	ve Pro	opagation in One-dimensional Anisotropic	
	\mathbf{Str}	ucture	8	. 55
	4.1	Wave	Propagation in Laminated Composite Thin Rods and	
		Beam	s	. 55
		4.1.1	Governing Equations and PEP	. 56
		4.1.2	Spectrum and Dispersion Relations	. 58
	4.2	Spect	ral Element Formulation	. 59
		4.2.1	Finite Length Element	. 59
		4.2.2	Throw-off Element	. 61
	4.3	Nume	erical Results and Discussions	. 61
		4.3.1	Impact on a Cantilever Beam	. 61
		4.3.2	Effect of the Axial–Flexural Coupling	. 63
		4.3.3	Wave Transmission and Scattering Through an	
			Angle-joint	. 66
	4.4	Wave	Propagation in Laminated Composite Thick Beams:	
		Poisso	on's Contraction and Shear Deformation Models	. 69
		4.4.1	Wave Motion in a Thick Composite Beam	. 70
		4.4.2	Coupled Axial–Flexural Shear and Thickness	70
		4 4 9	Contractional Modes	. 72
		4.4.3	Correction Factors at High Frequency Limit	. 74
		4.4.4	Coupled Axial–Flexural Snear Without the Inickness	70
		4 4 5	Contractional Modes	. 70
	4 5	4.4.5 M. J.	Modeling Spatially Distributed Dynamic Loads	. (9
	4.0	Mode	Bronantional Depending Through a Dispectized Finite	. 81
		4.5.1	Foregotional Damping Inrough a Discretized Finite	01
		459	Properticeal Depending Through the Ways Equation	. 81
	16	4.0.2 Nume	Proportional Damping Infough the wave Equation	. 00 00
	4.0	Nume 4.6.1	Comparison of Desponse with Standard FEM	. 00
		4.0.1	Comparison of Response with Standard FEM	. 91
		4.0.2	Presence of Axial-Flexural Shear Coupling	. 93
		4.0.5	Parametric Studies on a Cantilever Deam	. 90
	47	4.0.4 Louon	d Composite Thin walled Tubes	. 90
	4.1	Layer	Linear Waya Motion in Composite Tube	. 99
	1 9	4.7.1 Speet	ral Finite Floment Model	102
	4.0	J o 1	Short and Long Wavelength Limits for Thin Shell and	. 107
		4.0.1	Limitations of the Proposed Model	107
		189	Comparison with Analytical Solution	114
		4.0.2		· 114

	4.9	Numerical Simulations 1	16		
		4.9.1 Time Response Under Short Impulse Load and the			
		Effect of Fiber Orientations 1	16		
_	***				
5	Wave Propagation in One-dimensional Inhomogeneous				
	Stru		23		
	5.1	Length-wise Functionally Graded Rod	24		
		5.1.1 Development of Spectral Finite Elements	20		
	5.0	5.1.2 Smoothing of Reflected Pulse	132		
	5.2	Deptn-wise Functionally Graded Beam	135		
		5.2.1 Spectral Finite Element Formulation	137		
		5.2.2 The Spectrum and Dispersion Relation	137		
		5.2.5 Effect of Gradation on the Cut-on Frequencies	L39 ∟49		
	59	5.2.4 Computation of the remperature Field	42		
	5.5	wave Propagation Analysis: Depth-wise Graded Beam (HM1) 1 5.2.1 Validation of the Engenulated SEE	42		
		5.3.1 Validation of the Formulated SFE	43		
		5.3.2 Lamb wave Propagation in FSD1 and HM1 Beams 1	148		
		5.3.5 Effect of Gradation on Stress waves	101		
	۲.4	5.3.4 Coupled Thermoelastic wave Propagation	103		
	0.4	Length-wise Graded Deall: F5D1 5.4.1 Creatual Finite Element Formulation	107		
		5.4.1 Spectral Finite Element Formulation	100		
		2.4.2 Effect of Gradation on the Spectrum and Dispersion	50		
		5.4.3 Effect of Cradation on the Cut off Frequencies	60		
	55	Numorical Examples	62		
	0.0	5.5.1 Effect of the Inhomogeneity	62		
		5.5.2 Elimination of the Reflection from Material Boundary 1	65		
		5.5.2 Eminiation of the reflection from Material Doundary	100		
6	Way	ve Propagation in Two-dimensional Anisotropic			
	Stru	uctures	71		
	6.1	Two-dimensional Initial Boundary Value Problem1	172		
	6.2	Spectral Element for Doubly Bounded Media1	176		
		6.2.1 Finite Layer Element (FLE)	177		
		6.2.2 Infinite Layer Element (ILE)	178		
		6.2.3 Expressions for Stresses and Strains1	178		
		6.2.4 Prescription of Boundary Conditions	79		
		6.2.5 Determination of Lamb Wave Modes	79		
	6.3	Numerical Examples 1	81		
		6.3.1 Propagation of Surface and Interface Waves	81		
		6.3.2 Propagation of Lamb Wave 1	85		
-	117				
7	Wa	ve Propagation in Two-dimensional Inhomogeneous	05		
	ətri	CIE Equalstian. Inhomogeneous Madia	195 105		
	(.1	5LE FORMULATION: INNOMOGENEOUS MEDIA	195 106		
		(.1.1 Exact formulation	190		

	7.2	Numerical Examples	201
		7.2.1 Propagation of Stress Waves	201
		7.2.2 Propagation of Lamb Waves	204
	7.3	SLE Formulation: Thermoelastic Analysis	208
		7.3.1 Inhomogeneous Anisotropic Material	209
		7.3.2 Discussion on the Properties of Wavenumbers	212
		7.3.3 Finite Layer Element (FLE)	215
		7.3.4 Infinite Layer Element (ILE)	216
		7.3.5 Homogeneous Anisotropic Material	217
	7.4	Numerical Examples	217
		7.4.1 Effect of the Relaxation Parameters - Symmetric	
		Ply-layup	217
		7.4.2 Interfacial Waves: Thermal and Mechanical Loading	220
		7.4.3 Propagation of Stress Waves	221
		7.4.4 Propagation of Thermal Waves	226
		7.4.5 Effect of Inhomogeneity	227
	7.5	Wave Motion in Anisotropic and Inhomogeneous Plate	229
		7.5.1 SPE Formulation: CLPT	230
		7.5.2 Computation of Wavenumber: Anisotropic Plate	234
		7.5.3 Computation of Wavenumber: Inhomogeneous Plate	237
		7.5.4 The Finite Plate Element	241
		7.5.5 Semi-infinite or Throw-off Plate Element	242
	7.6	Numerical Examples	243
		7.6.1 Wave Propagation in Plate with Ply-drop	243
		7.6.2 Propagation of Lamb waves	246
8	Solu	ution of Inverse Problems: Source and System	
0	Ider	atification	249
	8 1	Force Identification	243
	0.1	8.1.1 Force Reconstruction from Truncated Response	243
	82	Material Property Identification	253
	0.2	8.2.1 Estimation of Material Properties: Inhomogeneous Laver	$250 \\ 254$
		0.2.1 Estimation of Material Properties. Infomogeneous Layer	204
9	App	blication of SFEM to SHM: Simplified Damage Models .	259
	9.1	Various Damage Identification Techniques	259
		9.1.1 Techniques for Modeling Delamination	260
		9.1.2 Modeling Issues in Structural Health Monitoring	261
	9.2	Modeling Wave Scattering due to Multiple Delaminations	
		and Inclusions	262
	9.3	Spectral Element with Embedded Delamination	265
		9.3.1 Modeling Distributed Contact Between Delaminated	
		Surfaces	269
	9.4	Numerical Studies on Wave Scattering due to Single	
		Delamination	271
		9.4.1 Comparison with 2-D FEM	271

		9.4.2	Identification of Delamination Location from Scattered
			Wave
		9.4.3	Effect of Delamination at Ply-drops274
		9.4.4	Sensitivity of the Delaminated Configuration276
	9.5	A Sub	blaminate-wise Constant Shear Kinematics Model
	9.6	Specti	ral Elements with Embedded Transverse Crack
		9.6.1	Element-internal Discretization and Kinematic
			Assumptions
		9.6.2	Modeling Dynamic Contact Between Crack Surfaces 288
		9.6.3	Modeling Surface-breaking Cracks
		9.6.4	Distributed Constraints at the Interfaces Between
			Sublaminates and Hanging Laminates
	9.7	Nume	rical Simulations
		9.7.1	Comparison with 2-D FEM
		9.7.2	Identification of Crack Location from Scattered Wave 294
		9.7.3	Sensitivity of the Crack Configuration
	9.8	Specti	ral Finite Element Model for Damage Estimation
		9.8.1	Spectral Element with Embedded Degraded Zone 300
	9.9	Nume	rical Simulations
10	Apr	licatio	on of SFEM to SHM: Efficient Damage
10	Dot	Action	Techniques 307
	10.1	Strate	recentiques
	10.1	Spect	ral Power Flow 311
	10.2	10.2.1	Properties of Spectral Power 312
		10.2.1	Measurement of Wave Scattering due to Delaminations
		10.2.2	and Inclusions Using Spectral Power 314
	10.3	Power	Flow Studies on Wave Scattering
	10.0	10.3.1	Wave Scattering due to Single Delamination 314
		10.3.1	Wave Scattering due to Longth wise Multiple
		10.9.2	Delaminations 316
		1033	Wave Scattering due to Dopth wise Multiple
		10.5.5	Delaminations 317
	10.4	Wavo	Scattering due to Strip Inclusion 310
	10.4	10 / 1	Power Flow in a Somi infinite Strip Inclusion with
		10.4.1	Rounded Media: Effect of Change in the Material
			Dounded Media. Effect of Change in the Material
		10 4 9	Effect of Change in the Material Droportion of a Strin
		10.4.2	Effect of Change in the Material Properties of a Strip
	10 F	Dama	mcrusion
	10.0	Dama	ge Force Indicator for 5r EM
	10.0	INUME	Figure a final planing time
		10.6.1	Effect of Single Delamination
		10.6.2	Effect of Multiple Delaminations
		10.6.3	Sensitivity of Damage Force Indicator due to Variation
			in Delamination Size

		10.6.4 Sensitivity of Damage Force Indicator due to Variation in Delamination Donth	221
	10.7	Constin Algorithm (CA) for Delemination Identification	227
	10.7	10.71 Objective Functions in CA for Delamination	557
		Identification	228
		10.7.2 Displacement based Objective Functions	338
		10.7.2 Displacement-based Objective Functions	000 949
	10.9	Case Studies with a Cantilever Beam	040 946
	10.0	10.8.1 Identification of Delemination Leastion	240
		10.8.1 Identification of Delamination Location	340
		10.8.2 Identification of Delamination Size	348
		10.8.3 Identification of Delamination Location and Size	349
		10.8.4 Identification of Delamination Location, Size and Depth	349
	10.0	10.8.5 Effect of Delamination Near the Boundary	350
	10.9	Neural Network Integrated with SFEM	352
	10.10	ONumerical Results and Discussion	357
11	Sno	stral Finite Floment Method for Active Wave Control	365
11	11 1	Challenges in Designing Active Breadband Control Systems	365
	11.1	11.1.1 Strategies for Vibration and Wave Control	266
		11.1.1 Strategies for vibration and wave Control	300 971
	11.0	Esternally Manufal Dania (Astin Dania)	371
	11.2	Externally Mounted Passive/Active Devices	312
	11.3	Modeling Distributed Transducer Devices	377
		11.3.1 Plane Stress Constitutive Model of Stacked and	9 7 0
		Layered Piezoelectric Composite	378
		(DDC)	9.01
		$(PFC) \dots \dots$	381
	11 4	11.3.3 Design Steps for Broadband Control	391
	11.4	Active Spectral Finite Element Model	394
		11.4.1 Spectral Element for Finite Beams	394
		11.4.2 Sensor Element	395
		11.4.3 Actuator Element	395
		11.4.4 Numerical Implementation	397
	11.5	Effect of Broadband Distributed Actuator Dynamics	398
	11.6	Active Control of Multiple Waves in Helicopter Gearbox	100
		Support Struts	402
		11.6.1 Active Strut System	404
		11.6.2 Numerical Simulations	405
	11.7	Optimal Control Based on ASFEM and Power Flow	415
		11.7.1 Linear Quadratic Optimal Control Using Spectral Power	416
		11.7.2 Broadband Control of a Three-member Composite	
		Beam Network	417
Re	feren	ces	423
т	low		190
iuo	iex		439