Contents

Abbreviations xix
1 Introduction to Process Supervision 1
1.1 Process Supervision 1
1.1.1 Basic Diagnosis Tasks 3
1.1.2 Fault, Failure and Safety 4
1.2 Diagnostic System 7
1.2.1 Specification of Diagnostic Systems 7
1.2.2 Classification of Diagnostic Systems 8
1.3 Organization of the Book 11
2 Bond Graph Modeling in Process Engineering 13
2.1 The Bond Graph Methodology 13
2.1.1 Introduction 13
2.1.2 Concepts and Definitions 13
2.1.3 Why Use Bond Graphs? 18
2.2 Generalized Variables in Bond Graph Models 19
2.2.1 Power Variables 19
2.2.2 Energy Variables 20
2.2.3 Word Bond Graph and Block Diagram 21
2.3 Pseudo Bond Graph 22
2.3.1 Why Pseudo Bond Graph? 22
2.3.2 Pseudo Power Variables 24
2.3.3 Pseudo Energy Variables 25
2.4 Basic Bond Graph Elements 26
2.4.1 One Port Passive Elements 26
2.4.2 Active Elements 37
2.4.3 Junctions 38
2.4.4 Transformers and Gyrators 41
2.4.5 Information Bonds 43
2.5 Causality 43
2.5.1 Introduction 43
2.5.2 Sequential Causality Assignment Procedure (SCAP) 45
2.5.3 Bicausal Bond Graphs 47
2.5.4 State-space Equations 48
2.5.5 Model Structure Knowledge 50
2.6 Single Energy Bond Graph 52
2.6.1 Bond Graphs for Mechanical Systems 52
2.6.2 Bond Graphs for Thermal Processes 52
2.7 Formal Generation of Dynamic Models 59
2.7.1 Bond Graph Software 59
2.7.2 Application 59
2.8 Coupled Energy Bond Graph 62
2.8.1 Representation 62
2.8.2 Thermofluid Sources 63
2.8.3 Thermofluid Multiport R 63
2.8.4 Thermofluid Multiport C 66
2.8.5 Application: Bond Graph Model of a Thermofluid Process 68
3 Model-based Control 81
3.1 Introduction 81
3.2 Classical Model-based Control 84
3.2.1 Conversion of Bond Graph Models to Signal Flow Graph Models 84
3.2.2 Transfer Function from State-space Models 91
3.2.3 Conversion of Bond Graph Models to Block Diagram Models 93
3.2.4 Example I: Physical Model-based Control 93
3.2.5 Example II: Physical Model-based System Design 95
3.3 Causal Paths 100
3.3.1 Transfer Functions from Bond Graph Models 101
3.3.2 Delay and Attenuation Dynamics 103
3.4 Augmented Controller and Observer Design 104
3.4.1 Pole Placement 104
3.4.2 Example: Active Flow-induced Vibration Isolation 107
3.4.3 Pole Placement Architecture in Bond Graph Models 109
3.4.4 Discrete-time Augmented Controller and Observer 111
3.4.5 Current Estimator 112
3.5 Structural Analysis of Control Properties 113
3.5.1 Structural Rank 113
3.5.2 Structural Controllability 114
3.5.3 Structural Observability 116
3.5.4 Example I: Two Spools in a Cylinder 118
3.5.5 Example II: A Hybrid Two-tank System 121
3.5.6 Example III: A Biomechanics Problem 124
3.5.7 Infinite Zeroes and Relative Degree 128
3.5.8 Zero Dynamics 133
4 Bond Graph Model-based Qualitative FDI 141
4.1 Model Order Reduction 141
4.2 FDI Using Bond Graphs and Qualitative Reasoning 154
4.2.1 Determination of Initial Fault Set 155
4.2.2 Fault Disambiguation 158
4.3 Qualitative Analysis Using Tree Graphs 159
4.4 Qualitative FDI Using Temporal Causal Graphs 163
4.4.1 Fault Hypothesis Generation 164
4.4.2 Fault Hypothesis Validation 166
4.5 Hybrid Diagnosis with Temporal Causal Graphs 169
4.6 Remarks on Model Linearization 170
5 Bond Graph Model-based Quantitative FDI 177
5.1 Introduction 177
5.2 Classical Quantitative FDI and Residual Generation 180
5.2.1 Observer-based Methods 181
5.2.2 Observer-based Residuals 183
5.2.3 Unknown Input Observers 185
5.2.4 Parity Space Residuals 191
5.3 Analytical Redundancy Relations and Fault Signature 195
5.3.1 Residual and Decision Procedure 195
5.3.2 The Fault Signature Matrix 196
5.4 Structured Approach to ARR Derivation 198
5.4.1 Behavior Model 198
5.4.2 Constraints and Variables 201
5.4.3 Derivation of ARRs 202
5.5 ARR Generation from Bond Graph Models 204
5.5.1 Constraints and Variables 204
5.5.2 Algorithm for Generation of ARRs 207
5.5.3 Example 209
5.6 Causality Inversion Approach for ARR Derivation 214
5.6.1 Example I: A Mechanical System 215
5.6.2 Example II: A Two-tank System 217
5.7 An FDI Application 218
5.7.1 Residual Evaluation and Fault Signature Matrix 218
5.7.2 Single Fault Hypothesis and Fault Isolation 220
5.7.3 Simulation Results 221
6 Application to a Steam Generator Process 229
6.1 Introduction 229
6.1.1 Process Description 229
6.1.2 Nomenclature 231
6.1.3 Word Bond Graph Model of the Process 233
6.2 Bond Graph Models of Steam Generator's Components 234
6.2.1 Bond Graph Model of the Storage Tank 234
6.2.2 Bond Graph Model of the Supply System 235
6.2.3 Bond Graph Model of the Boiler 236
6.2.4 Bond Graph Model of the Steam Expansion System 238
6.2.5 Bond Graph Model of the Condenser 239
6.2.6 Bond Graph Model of the Condensate Discharge Valves 243
6.3 Model Validation 244
6.4 Design of the Supervision System 248
6.4.1 Determination of Hardware Redundancies 249
6.4.2 Derivation of ARRs 250
6.4.3 Practical Fault Signature Matrix and Residual Sensitivity 253
6.4.4 Effect of Hybrid Components 254
6.4.5 Selection of Decision Procedure 256
6.5 Online Implementation 257
6.5.1 Data Acquisition and Toolbox Integration 257
6.5.2 Native Interface 261
6.6 Experimental Validation of Fault Scenarios 262
6.6.1 Process Faults 262
6.6.2 Sensor Faults 265
6.6.3 Actuator Faults 266
6.6.4 Controller Faults 267
6.7 Reconfiguration 268
7 Diagnostic and Bicausal Bond Graphs for FDI 271
7.1 Diagnostic Bond Graph 271
7.1.1 Derivation of ARR 274
7.1.2 Example of a Non-resolvable System 276
7.1.3 Fault Signature Matrix from Causal Paths 280
7.2 Simulation and Real Time Implementation of the Residuals 281
7.2.1 Integrated System Simulation: Coupling the Models 282
7.2.2 Simulation Results 285
7.3 The Initial Conditions Problem 289
7.3.1 Order of Extra Derivatives 292
7.3.2 Fault Scenario Simulation 294
7.4 Matching Problems in Classical Bond Graph Modeling 294
7.4.1 Notion of Bicausality 298
7.4.2 Algorithm for ARR Generation and Construction of FSM 300
7.5 Example I: A Two-tank Process 300
7.5.1 Sensor Placement by Using Bicausal Bond Graphs 300
7.5.2 Residual Generation: Symbolic Method 304
7.5.3 Residual Evaluation and Fault Scenario Simulation 305
7.6 Example II: A Servo-valve Controlled Motor Transmission System 306
7.6.1 System Description and Bond Graph Model 306
7.6.2 ARRs and FSM 308
7.6.3 Validation Through Simulation 310
7.7 The Fault Isolation Problem 311
8 Actuator and Sensor Placement for Reconfiguration 315
8.1 Introduction 315
8.1.1 Minimal Sensor and Actuator Placement 315
8.1.2 Sensor Placement for FDI and FTC 316
8.2 External Model 316
8.2.1 External Model in a Bond Graph Sense 317
8.2.2 Services 317
8.2.3 User Selected Operating Mode (USOM) 318
8.2.4 Operating Mode Management 319
8.3 Application to a Smart Pneumatic Valve 320
8.3.1 Description of the System 321
8.3.2 Bond Graph Model of the Smart Actuator 322
8.3.3 Missions and Versions 325
8.3.4 Operating Mode Management of the Smart Actuator 325
8.3.5 Monitoring of the Smart Actuator 328
8.4 Reconfiguration of a Thermo-fluid System 329
8.4.1 Minimal Sensor and Actuator Placement 329
8.4.2 Determination of Direct and Deduced Redundancies 332
8.4.3 Analytical Redundancy Relations and FSM 333
8.4.4 Sensor and Actuator Loss 335
8.4.5 Automaton Representation of Equipment Availability 336
8.4.6 Operating Modes of the Thermo-fluid System 338
8.5 Application to a Steam Generator Process 339
8.5.1 Operating Modes of the Steam Generator Process 340
8.5.2 Experimental Results 342
9 Isolation of Structurally Non-isolatable Faults 347
9.1 Introduction 347
9.2 Residuals and Robustness 348
9.3 Localization of Fault Subspace 350
9.4 Methodology for Single Fault Isolation 352
9.4.1 Parameter Estimation 352
9.4.2 Parallel Simulation of Bank of Fault Models 353
9.5 Application to a Controlled Two-tank System 355
9.5.1 ARRs and FSM 356
9.5.2 Parameter Estimation 359
9.5.3 Improvement of Isolability Using Bank of Fault Models 361
9.5.4 Validation Through Simulation 363
9.5.5 Qualitative Trend Analysis 365
10 Multiple Fault Isolation Through Parameter Estimation 373
10.1 Introduction 373
10.1.1 Adaptive Thresholds for Robust Diagnosis 374
10.1.2 Localization of Fault Subspace 379
10.2 Fault Isolation by Parameter Estimation 380
10.3 Example I: A Linear Two-tank System 383
10.3.1 Output Error Minimization 384
10.3.2 Optimization of Least Squares of ARRs 387
10.3.3 Optimization by Using Diagnostic Bond Graph 391
10.4 Example II: A Refrigerator Subsystem 393
10.4.1 Bond Graph Model and the ARRs 395
10.4.2 Fault Isolation Through Parameter Estimation 397
10.5 Example III: A Non-linear Two-tank System 402
10.5.1 The System and Its Bond Graph Model 402
10.5.2 Residual Generation and Fault Detection 404
10.5.3 Fault Isolation Through Parameter Estimation 405
10.6 Optimization by Using Residual Sensitivity 409
10.6.1 Gauss-Newton Optimization 411
10.6.2 Example 411
10.7 Sensitivity Bond Graphs 414
10.7.1 Diagnostic Sensitivity Bond Graphs 415
10.7.2 Example of the Use of Sensitivity Bond Graphs for FDI 417
11 Fault Tolerant Control 423
11.1 Introduction 423
11.2 Classical System Inversion Algorithms 425
11.2.1 Linear Time-Invariant (LTI) System Inversion 426
11.2.2 Implicit Inversion of Strictly Proper Systems 427
11.2.3 Examples of System Inversion 428
11.2.4 Example of Input Reconstruction 429
11.2.5 Example of Bond Graph Model Based Implicit System Inversion 431
11.2.6 Bond Graph Model Based Explicit System Inversion 432
11.2.7 Example of Bond Graph Model Based Explicit System Inversion 434
11.3 Parameter Estimation 435
11.4 Benchmark Problem: Active FTC of a Two-tank System 437
11.4.1 Fault Quantification with Single Fault Hypothesis 437
11.4.2 Fault Quantification with Multiple Fault Hypotheses 440
11.4.3 Fault Accommodation Through Fault Tolerant Control 442
11.4.4 System Inversion 443
11.4.5 Actuator Sizing 443
11.5 Passive FTC: Robust Overwhelming Control 447
11.5.1 Overwhelming Controller Design 447
11.5.2 Example: A Robust Level Controller 450
References 453
Index 467

