Contents

Ab	brevia	tions		xix	
1	Intr	Introduction to Process Supervision			
	1.1		ss Supervision		
		1.1.1	Basic Diagnosis Tasks		
		1.1.2	Fault, Failure and Safety		
	1.2	Diagn	ostic System		
		1.2.1	Specification of Diagnostic Systems		
		1.2.2	Classification of Diagnostic Systems		
	1.3	Organ	ization of the Book		
2	Bon	d Grap	oh Modeling in Process Engineering	13	
	2.1		ond Graph Methodology	13	
		2.1.1	Introduction	13	
		2.1.2	Concepts and Definitions	13	
		2.1.3	Why Use Bond Graphs?	18	
	2.2	Gener	alized Variables in Bond Graph Models	19	
		2.2.1	Power Variables	19	
		2.2.2	Energy Variables	20	
		2.2.3	Word Bond Graph and Block Diagram	21	
	2.3 Pseudo Bond Graph		o Bond Graph	22	
		2.3.1	Why Pseudo Bond Graph?	22	
		2.3.2	Pseudo Power Variables	24	
		2.3.3	Pseudo Energy Variables	25	
	2.4	Basic	Bond Graph Elements	26	
		2.4.1	One Port Passive Elements	26	
		2.4.2	Active Elements	37	
		2.4.3	Junctions	38	
		2.4.4	Transformers and Gyrators	41	
		2.4.5	Information Bonds	43	
	2.5	Causa	lity	43	
		2.5.1	Introduction	43	
		2.5.2	Sequential Causality Assignment Procedure (SCAP)	45	

xiv Contents

		2.5.3	Bicausal Bond Graphs	47
		2.5.4	State-space Equations	48
		2.5.5	Model Structure Knowledge	50
	2.6	Single	Energy Bond Graph	52
		2.6.1	Bond Graphs for Mechanical Systems	52
		2.6.2	Bond Graphs for Thermal Processes	52
	2.7	Forma	al Generation of Dynamic Models	59
		2.7.1	Bond Graph Software	59
		2.7.2	Application	59
	2.8	Coupl	ed Energy Bond Graph	62
		2.8.1	Representation	62
		2.8.2	Thermofluid Sources	63
		2.8.3	Thermofluid Multiport R	63
		2.8.4	Thermofluid Multiport C	66
		2.8.5	Application: Bond Graph Model of a Thermofluid Process	68
3	Mod	del-base	ed Control	81
	3.1	Introd	uction	81
	3.2	Classi	cal Model-based Control	84
		3.2.1	Conversion of Bond Graph Models to Signal Flow Graph	
			Models	84
		3.2.2	Transfer Function from State-space Models	91
		3.2.3	Conversion of Bond Graph Models to Block Diagram	
			Models	93
		3.2.4	Example I: Physical Model-based Control	93
		3.2.5	Example II: Physical Model-based System Design	95
	3.3	Causa	l Paths	
		3.3.1	Transfer Functions from Bond Graph Models	
		3.3.2	Delay and Attenuation Dynamics	
	3.4	_	ented Controller and Observer Design	
		3.4.1	Pole Placement	
		3.4.2	Example: Active Flow-induced Vibration Isolation	
		3.4.3	Pole Placement Architecture in Bond Graph Models	
		3.4.4	Discrete-time Augmented Controller and Observer	
		3.4.5	Current Estimator	
	3.5	Struct	ural Analysis of Control Properties	
		3.5.1	Structural Rank	
		3.5.2	Structural Controllability	
		3.5.3	Structural Observability	
		3.5.4	Example I: Two Spools in a Cylinder	
		3.5.5	Example II: A Hybrid Two-tank System	
		3.5.6	Example III: A Biomechanics Problem	
		3.5.7	Infinite Zeroes and Relative Degree	
		3.5.8	Zero Dynamics	133

Contents xv

4	Bon	d Grap	oh Model-based Qualitative FDI	141
	4.1	Mode	l Order Reduction	141
	4.2	FDI U	Using Bond Graphs and Qualitative Reasoning	154
		4.2.1		
		4.2.2		
	4.3		tative Analysis Using Tree Graphs	
	4.4	Qualit	tative FDI Using Temporal Causal Graphs	
		4.4.1	Fault Hypothesis Generation	
		4.4.2	Fault Hypothesis Validation	
	4.5		d Diagnosis with Temporal Causal Graphs	
	4.6	Rema	rks on Model Linearization	170
5	Bon	d Gran	oh Model-based Quantitative FDI	177
	5.1		luction	
	5.2		cal Quantitative FDI and Residual Generation	
		5.2.1	Observer-based Methods	
		5.2.2	Observer-based Residuals	
		5.2.3	Unknown Input Observers	
		5.2.4	Parity Space Residuals	
	5.3	Analy	tical Redundancy Relations and Fault Signature	
		5.3.1	Residual and Decision Procedure	195
		5.3.2	The Fault Signature Matrix	196
	5.4 Structured Approach to ARR Derivation		ured Approach to ARR Derivation	
		5.4.1	Behavior Model	198
		5.4.2	Constraints and Variables	201
		5.4.3	Derivation of ARRs	202
	5.5	ARR	Generation from Bond Graph Models	204
		5.5.1	Constraints and Variables	204
		5.5.2	Algorithm for Generation of ARRs	207
		5.5.3	Example	209
	5.6	Causa	lity Inversion Approach for ARR Derivation	214
		5.6.1	Example I: A Mechanical System	215
		5.6.2	Example II: A Two-tank System	217
	5.7	An FI	OI Application	218
		5.7.1	Residual Evaluation and Fault Signature Matrix	
		5.7.2	Single Fault Hypothesis and Fault Isolation	
		5.7.3	Simulation Results	221
6	App	lication	n to a Steam Generator Process	229
	6.1		luction	
		6.1.1	Process Description	
		6.1.2	Nomenclature	
		6.1.3	Word Bond Graph Model of the Process	
	6.2		Graph Models of Steam Generator's Components	
		6.2.1	Bond Graph Model of the Storage Tank	

xvi Contents

		6.2.2 Bond Graph Model of the Supply System	235
		6.2.3 Bond Graph Model of the Boiler	
		6.2.4 Bond Graph Model of the Steam Expansion System	238
		6.2.5 Bond Graph Model of the Condenser	
		6.2.6 Bond Graph Model of the Condensate Discharge Valves	243
	6.3	Model Validation	244
	6.4	Design of the Supervision System	248
		6.4.1 Determination of Hardware Redundancies	249
		6.4.2 Derivation of ARRs	250
		6.4.3 Practical Fault Signature Matrix and Residual Sensitivity	253
		6.4.4 Effect of Hybrid Components	254
		6.4.5 Selection of Decision Procedure	256
	6.5	Online Implementation	257
		6.5.1 Data Acquisition and Toolbox Integration	257
		6.5.2 Native Interface	261
	6.6	Experimental Validation of Fault Scenarios	262
		6.6.1 Process Faults	262
		6.6.2 Sensor Faults	265
		6.6.3 Actuator Faults	266
		6.6.4 Controller Faults	267
	6.7	Reconfiguration	268
7	Diag	nostic and Bicausal Bond Graphs for FDI	271
	7.1	Diagnostic Bond Graph	
		7.1.1 Derivation of ARR	
		7.1.2 Example of a Non-resolvable System	
		7.1.3 Fault Signature Matrix from Causal Paths	
	7.2	Simulation and Real Time Implementation of the Residuals	
		7.2.1 Integrated System Simulation: Coupling the Models	
		7.2.2 Simulation Results	
	7.3	The Initial Conditions Problem	289
		7.3.1 Order of Extra Derivatives	292
		7.3.2 Fault Scenario Simulation	294
	7.4	Matching Problems in Classical Bond Graph Modeling	
		7.4.1 Notion of Bicausality	
		7.4.2 Algorithm for ARR Generation and Construction of FSM	
	7.5	Example I: A Two-tank Process	
		7.5.1 Sensor Placement by Using Bicausal Bond Graphs	
		7.5.2 Residual Generation: Symbolic Method	
		7.5.3 Residual Evaluation and Fault Scenario Simulation	
	7.6	Example II: A Servo-valve Controlled Motor Transmission System.	
		7.6.1 System Description and Bond Graph Model	
		7.6.2 ARRs and FSM	
		7.6.3 Validation Through Simulation	310
	7.7	The Fault Isolation Problem	

Contents xvii

8	Actu		nd Sensor Placement for Reconfiguration		
	8.1	Introdu	action	. 315	
		8.1.1	Minimal Sensor and Actuator Placement	. 315	
		8.1.2	Sensor Placement for FDI and FTC		
	8.2	Extern	al Model		
		8.2.1	External Model in a Bond Graph Sense		
		8.2.2	Services		
		8.2.3	User Selected Operating Mode (USOM)		
		8.2.4	Operating Mode Management		
	8.3	Applic	ation to a Smart Pneumatic Valve		
		8.3.1	Description of the System		
		8.3.2	Bond Graph Model of the Smart Actuator		
		8.3.3	Missions and Versions	. 325	
		8.3.4	Operating Mode Management of the Smart Actuator		
		8.3.5	Monitoring of the Smart Actuator		
	8.4	Recon	figuration of a Thermo-fluid System		
		8.4.1	Minimal Sensor and Actuator Placement		
		8.4.2	Determination of Direct and Deduced Redundancies		
		8.4.3	Analytical Redundancy Relations and FSM	. 333	
		8.4.4	Sensor and Actuator Loss		
		8.4.5	Automaton Representation of Equipment Availability		
		8.4.6	Operating Modes of the Thermo-fluid System		
	8.5	Applic	eation to a Steam Generator Process		
		8.5.1	Operating Modes of the Steam Generator Process		
		8.5.2	Experimental Results	. 342	
9	Isolation of Structurally Non-isolatable Faults				
	9.1		uction		
	9.2	Residu	als and Robustness	. 348	
	9.3				
	9.4		dology for Single Fault Isolation		
		9.4.1	Parameter Estimation		
		9.4.2	Parallel Simulation of Bank of Fault Models	. 353	
	9.5	Applic	eation to a Controlled Two-tank System	. 355	
		9.5.1	ARRs and FSM		
		9.5.2	Parameter Estimation	. 359	
		9.5.3	Improvement of Isolability Using Bank of Fault Models	. 361	
		9.5.4	Validation Through Simulation		
		9.5.5	Qualitative Trend Analysis	. 365	
10	Multiple Fault Isolation Through Parameter Estimation				
			uction		
			Adaptive Thresholds for Robust Diagnosis		
			Localization of Fault Subspace		
	10.2		solation by Parameter Estimation		

xviii Contents

	10.3	Example I: A Linear Two-tank System	. 383	
		10.3.1 Output Error Minimization		
		10.3.2 Optimization of Least Squares of ARRs	. 387	
		10.3.3 Optimization by Using Diagnostic Bond Graph	. 391	
	10.4	Example II: A Refrigerator Subsystem	. 393	
		10.4.1 Bond Graph Model and the ARRs	. 395	
		10.4.2 Fault Isolation Through Parameter Estimation	. 397	
	10.5	Example III: A Non-linear Two-tank System	. 402	
		10.5.1 The System and Its Bond Graph Model	. 402	
		10.5.2 Residual Generation and Fault Detection	. 404	
		10.5.3 Fault Isolation Through Parameter Estimation	. 405	
	10.6	Optimization by Using Residual Sensitivity	. 409	
		10.6.1 Gauss-Newton Optimization	. 411	
		10.6.2 Example	. 411	
	10.7	Sensitivity Bond Graphs	. 414	
		10.7.1 Diagnostic Sensitivity Bond Graphs	. 415	
		10.7.2 Example of the Use of Sensitivity Bond Graphs for FDI	. 417	
11		t Tolerant Control		
		Introduction		
	11.2	Classical System Inversion Algorithms		
		11.2.1 Linear Time-Invariant (LTI) System Inversion		
		11.2.2 Implicit Inversion of Strictly Proper Systems		
		11.2.3 Examples of System Inversion		
		11.2.4 Example of Input Reconstruction	. 429	
		11.2.5 Example of Bond Graph Model Based Implicit System		
		Inversion		
		11.2.6 Bond Graph Model Based Explicit System Inversion	. 432	
		11.2.7 Example of Bond Graph Model Based Explicit System		
		Inversion		
		Parameter Estimation		
	11.4	Benchmark Problem: Active FTC of a Two-tank System		
		11.4.1 Fault Quantification with Single Fault Hypothesis		
		11.4.2 Fault Quantification with Multiple Fault Hypotheses		
		11.4.3 Fault Accommodation Through Fault Tolerant Control		
		11.4.4 System Inversion		
		11.4.5 Actuator Sizing		
	11.5	Passive FTC: Robust Overwhelming Control		
		11.5.1 Overwhelming Controller Design		
		11.5.2 Example: A Robust Level Controller	. 450	
D. e			4.50	
Kete	renc	es	. 433	
Index 4				