Contents

List of	Figure	s	xvii
List of	Tables		xxiii
Symbo	ols and	Abbreviations	XXV
Abb	reviation	S	XXV
Scala	ar and V	ector Signals	xxvi
Gene	eral Sym	bols	xxvi
Operators and Functions			xxxi
Crite	eria		xxxiii
Chapt	er 1.]	introduction	1
1.1.	An Ove	erview of the Recent History of Process Control in Industr	ry 1
1.2.	Where	are We Today?	2
1.3.	The Co	ontribution of this Book	3
1.4.	Synops	is	5
Chapt	er 2.]	Preliminary Material	7
2.1.	Introdu	action	7
2.2.	General Representation of a Closed-loop System and Closed-loop Stability		р 8
	2.2.1.	General Closed-loop Set-up	8
	2.2.2.	Closed-loop Transfer Functions and Stability	9
	2.2.3.	Some Useful Algebra for the Manipulation of Transfer Matrices	11
			xi

xii Contents

2.3.	LFT-ba	ased Representation of a Closed-loop System	12
2.4.	Coprin	ne Factorisations	14
	2.4.1.	Coprime Factorisations of Transfer Functions or Matrices	14
	2.4.2.	The Bezout Identity and Closed-loop Stability	18
2.5.	The ν -	gap Metric	20
	2.5.1.	Definition	20
	2.5.2.	Stabilisation of a Set of Systems by a Given Controller and Comparison with the Directed Gap Metric	22
	2.5.3.	The ν -gap Metric and Robust Stability	23
2.6.	Predict	tion-error Identification	24
	2.6.1.	Signals Properties	25
	2.6.2.	The Identification Method	26
	2.6.3.	Usual Model Structures	28
	2.6.4.	Computation of the Estimate	29
	2.6.5.	Asymptotic Properties of the Estimate	30
	2.6.6.	Classical Model Validation Tools	33
	2.6.7.	Closed-loop Identification	36
	2.6.8.	Data Preprocessing	37
2.7.	Balanc	ed Truncation	38
	2.7.1.	The Concepts of Controllability and Observability	38
	2.7.2.	Balanced Realisation of a System	40
	2.7.3.	Balanced Truncation	42
	2.7.4.	Numerical Issues	42
	2.7.5.	Frequency-weighted Balanced Truncation	43
	2.7.6.	Balanced Truncation of Discrete-time Systems	45
Chapte	er 3.	Identification in Closed Loop for Better Control	
		Design	47
3.1.	Introdu	action	47
3.2.	The Ro	ble of Feedback	48
3.3.	The Ef	fect of Feedback on the Modelling Errors	51
	3.3.1.	The Effect of Feedback on the Bias Error	51
	3.3.2.	The Effect of Feedback on the Variance Error	54
3.4.	The Ef	fect of Model Reduction on the Modelling Errors	56
	3.4.1.	Using Model Reduction to Tune the Bias Error	57
	3.4.2.	Dealing with the Variance Error	57
3.5.	Summa	ary of the Chapter	62

Chapte	er 4. I	Dealing with Controller Singularities in Closed-loop	р	
		Identification	65	
4.1.	Introduction			
4.2.	The Importance of Nominal Closed-loop Stability for Control			
	Design		66	
4.3.	Poles a	Poles and Zeroes of a System		
4.4.	Loss of Nonmin	Nominal Closed-loop Stability with Unstable or nimum-phase Controllers	69	
	4.4.1.	The Indirect Approach	70	
	4.4.2.	The Coprime-factor Approach	72	
	4.4.3.	The Direct Approach	76	
	4.4.4.	The Dual Youla Parametrisation Approach	78	
4.5.	Guideli	nes for an Appropriate Closed-loop Identification		
	Experin	nent Design	80	
	4.5.1.	Guidelines for the Choice of an Identification Method	80	
	4.5.2.	Remark on High-order Models Obtained by Two-stage		
		Methods	81	
4.6.	Numerical Illustration		82	
	4.6.1.	Problem Description	82	
	4.6.2.	The Indirect Approach	84	
	4.6.3.	The Coprime-factor Approach	87	
	4.6.4.	The Direct Approach	94	
	4.6.5.	The Dual Youla Parametrisation Approach	98	
	4.6.6.	Comments on the Numerical Example	107	
4.7.	Summa	ry of the Chapter	110	

Chap	oter 5.	Model and Controller Validation for Robust	
		Control in a Prediction-error Framework	111
5.1	. Introdu	uction	111
	5.1.1.	The Questions of the Cautious Process Control Engineer	111
	5.1.2.	Some Answers to these Questions	112
5.2	. Model	Validation Using Prediction-error Identification	116
	5.2.1.	Model Validation Using Open-loop Data	117
	5.2.2.	Control-oriented Model Validation Using Closed-loop	
		Data	122
	5.2.3.	A Unified Representation of the Uncertainty Zone	128
5.3	. Model	Validation for Control and Controller Validation	129

	5.3.1.	A Control-oriented Measure of the Size of a	
		Prediction-error Uncertainty Set	129
	5.3.2.	Controller Validation for Stability	132
	5.3.3.	Controller Validation for Performance	134
5.4.	The Ef	fect of Overmodelling on the Variance of Estimated	
	Transfe	er Functions	137
	5.4.1.	The Effect of Superfluous Poles and Zeroes	137
	5.4.2.	The Choice of a Model Structure	140
5.5.	Case S	tudies	142
	5.5.1.	Case Study I: Flexible Transmission System	142
	5.5.2.	Case Study II: Ferrosilicon Production Process	148
5.6.	Summa	ary of the Chapter	156

Chapter 6.		Control-oriented Model Reduction and Controller	
		Reduction	159
6.1.	Introd	luction	159
	6.1.1	From High to Low Order for Implementation Reasons	159
	6.1.2	High-order Controllers	160
	6.1.3	Contents of this Chapter	161
6.2.	A Clo	sed-loop Criterion for Model or Controller Order Reduction	n 161
6.3.	Choic	e of the Reduction Method	164
6.4.	Mode	Order Reduction	165
	6.4.1	Open-loop Plant Coprime-factor Reduction	166
	6.4.2	Performance-preserving Closed-loop Model Reduction	170
	6.4.3	Stability-preserving Closed-loop Model Reduction	177
	6.4.4	Preservation of Stability and Performance by Closed-loo	р
		Model Reduction	181
6.5.	Contr	oller Order Reduction	182
	6.5.1	Open-loop Controller Coprime-factor Reduction	183
	6.5.2	Performance-preserving Closed-loop Controller Reductio	n184
	6.5.3	Stability-preserving Closed-loop Controller Reduction	192
	6.5.4	Other Closed-loop Controller Reduction Methods	195
6.6.	Case \$	Study: Design of a Low-order Controller for a PWR Nuclea	ır
	Power	Plant Model	196
	6.6.1	Description of the System	196
	6.6.2	Control Objective and Design	197
	6.6.3	System Identification	199
	6.6.4	Model Reduction	201

		Contents	XV
	6.6.5. Controller Reduction		203
	6.6.6. Performance Analysis of the Designed Controll	ers	204
6.7.	Classification of the Methods and Concluding Remarks		207
6.8.	Summary of the Chapter		208
Chapte	er 7. Some Final Words		211
7.1.	A Unified Framework		211
7.2.	Missing Links and Perspectives		212
7.3.	Model-free Control Design		213
References		215	
Index			223