HANSER

Inhaltsverzeichnis

Markus Meister

Vademecum des Schleifens

ISBN: 978-3-446-42618-4

Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42618-4 sowie im Buchhandel.

Inhalt

VorwortXIII					
Eiı	EinleitungXV				
Le	selei	tfaden	xxv		
1	Sch	leifmaschinen und Standard-Schleifverfahren	1		
	1.1	Allgemeines zu den Schleifverfahren	1		
	1.2	Gemeinsamkeiten der verschiedenen Schleifmaschinenarten			
	1.3	Standard-Schleifverfahren	4		
	1.4	Anfunksteuerungen	5		
	1.5	Aussenrund-Umfangs-Längsschleifen AUL	6		
	1.6	Aussenrund-Umfangs-Schälschleifen AUL(S)	6		
	1.7	Aussenrund-Umfangs-Querschleifen AUQ	7		
	1.8	Aussenrund-Schrägeinstechschleifen.			
	1.9	Innenrund-Umfangs-Längsschleifen IUL.	8		
	1.10	Innenrund-Umfangs-Schälschleifen IUL(S)	9		
	1.11	Innenrund-Umfangs-Querschleifen IUQ			
	1.12	Plan-Seiten-Längsschleifen PSL			
	1.13	Plan-Umfangs-Längsschleifen PUL	10		
	1.14	Plan-Umfangs-Querschleifen PUQ.	11		
	1.15	Dreh-Umfangs-Längsschleifen DUL	12		
	1.16	Dreh-Umfangs-Querschleifen DUQ	12		
	1.17	Tauchschleifen			
	1.18	Spitzenlos-Schleifen (Centerless-Schleifen)			
	1.19	Bandschleifen (Durchlaufschleifen)	14		
	1.20	Schleifen der Nocken von Nockenwellen			
	1.21	Zusammenfassung von Kapitel 1	16		

2	Kinematik, Dynamik und Zerspanungslehre			
	2.1	Kinematik, Dynamik und Zerspanungslehre	19	
	2.2	Schneidengeometrie	21	
	2.3	Spanbildungskinematik	26	
		2.3.1 Umfangsschleifen (Fall 1)	26	
		2.3.2 Stirnschleifen (Fall 2)	26	
		2.3.3 Gegenlaufschleifen (GGL)	27	
		2.3.3.1 Wirkbahnen beim Gegenlaufschleifen (GGL)	28	
		2.3.4 Gleichlaufschleifen (GLL)		
		2.3.4.1 Wirkbahnen beim Gleichlaufschleifen (GLL)	29	
		2.3.5 Druckkraftaufbau beim Gegenlauf- und beim Gleichlaufschleifen	30	
		2.3.6 Wärmeverlauf beim Gegenlauf- und beim Gleichlaufschleifen	31	
	2.4	Spanwinkel, Scherwinkel und der Stauchfaktor	32	
		2.4.1 Spanwinkel <i>y</i>	32	
		2.4.2 Scherwinkel ϕ	32	
		2.4.3 Stauchfaktor λ	33	
		2.4.4 Freiwinkel α	33	
	2.5	Schergeschwindigkeit v_{c2}	34	
		2.5.1 Schergeschwindigkeit v_{c2} (konventionell bis ca. v_c = 80 m/s)	34	
		2.5.2 Schergeschwindigkeit v_{c2} (Hochgeschwindigkeitsschleifen)	36	
	2.6	Spanbildung, Spanformen und Spanquerschnitte	39	
		2.6.1 Spanbildung	39	
		2.6.2 Spanformen und Spanquerschnitte	40	
	2.7	Wärmeverteilung in der Kontaktzone	47	
	2.8	Wärmeentstehung und Wärmeableitung	51	
	2.9	Wirkende Kräfte am Schleifkorn (zweidimensional)	57	
	2.10	Verhalten der Schleifkräfte in Abhängigkeit der Schmierwirkung	59	
	2.11	Zerspan- bzw. Schnittgeschwindigkeiten	60	
	2.12	Zug- und Druckspannungen in der Werkstücksrandzone	62	
		2.12.1 Allgemeines (Zug- und Druckspannungen)	62	
		2.12.2 Zug- oder Druckspannungen – und was bewirken sie?	63	
		2.12.3 Durch Schleifen erzeugte Eigenspannungen	64	
		2.12.4 Prinzipielle Darstellung von Zug- und Druckspannungen	66	
	2.13	Zusammenfassung von Kapitel 2	68	
3	Sch	leifstoffe und Schleifscheiben	69	
	3.1	Entwicklung der Schleifscheiben.	69	
	3.2	Schleifstoffe allgemein	70	
	3.3	Schleifstoffe – Kornarten und deren Herstellung	71	
	3.4	Siliziumkarbidarten (grün und dunkel)		
	3.5	Kubisches Bornitrid (CBN)		
	3.6	Diamant - der härteste und edelste Stoff	80	
	3.7	Kornhärten der wichtigsten Schleifstoffe	83	

	3.8	Brechen, Sieben und Korngrössen
	3.9	Korngrössen nach FEPA-Normung
	3.10	Bindungen, Scheibenhärte, Strukturen (Porosität)
	3.11	Konzentration von CBN und Diamant im Schleifbelag
	3.12	Anwendungen, Abtragsleistungen und G-Werte93
	3.13	Schleifstoffe und deren Anwendungsschwerpunkte
	3.14	Mikro- und Makroausbruch der Schleifkörner
	3.15	Arbeitsdruckkraft F_d nach OTT
	3.16	Anpassung der Wirkrautiefe $R_{\rm ts}$ an die Scheibenbelastung
	3.17	Brennen von Schleifscheiben mit keramischen Bindungen
	3.18	Härtemessung von keramisch gebundenen Schleifscheiben
	3.19	Statische und dynamische Härtewirkung der Schleifscheiben
	3.20	Auswuchten von Schleifscheiben
	3.21	Zusammenfassung von Kapitel 3
	3.22	Scheibenbilder
4	Einf	lussgrössen und ihre Zusammenhänge 123
	4.1	Allgemeines
	4.2	Primäre Einflussgrössen
	4.3	Sekundäre Einflussgrössen
	4.4	Zusammenhänge unter den Einflussgrössen
	4.5	Schnitt- oder Umfangsgeschwindigkeit $v_{\rm c}$
	4.6	Werkstück- oder Vorschubgeschwindigkeit v_{fw}
	4.7	Werkstoff-, Bearbeitungs- oder Schleifzugabe $z_{\rm w}$
	4.8	Geschwindigkeitsverhältnis $q_{\rm s}$
	4.9	Zustellung a_{e}
	4.10	Zustell- oder Einstechgeschwindigkeit $v_{\rm fr}$
	4.11	Seitenvorschub $f_{\rm a}$ pro Werkstückumdrehung
	4.12	Seitenvorschubgeschwindigkeit $v_{\rm fa}$
	4.13	Überdeckungsgrad U_c beim Aussen- und Innenrundschleifen
	4.14	Zeitspanvolumen $Q_{\rm w}$
	4.15	Bezogenes Zeitspanvolumen Q'_{w} (allgemein)
	4.16	Bezogenes Zeitspanvolumen Q'_{w} - "Tauchschleifen"
	4.17	Bezogenes Zeitspanvolumen Q'_{w} – "Seiten-Längsschleifen"
	4.18	Bezogenes Zeitspanvolumen $Q_{\rm w}'$ – "Aussen- und Innenrund-Schälschleifen"
	4.19	Bezogenes Grenzzeitspanvolumen $Q'_{\text{w grenz.}}$
	4.20	Theoretische mittlere Spandicke $h_{\rm m}$
	4.21	Abtragsvolumen $V_{\rm w}$ und bezogenes Abtragsvolumen $V_{\rm w}'$
	4.22	Kontaktlänge $l_{\rm k}$
	4.23	Kontaktwinkel $\alpha_{\rm k}$
	4.24	MNIR – The Maximum Normal Infeed Rate v_{fwin}
	4.25	Schleifweg $l_{\rm s}'$ pro Scheibenumdrehung
	4 26	Rattermarken 168

	4.27	Kontaktbreite $b_{\mathbf{k}}$	171
	4.28	Kontaktfläche $A_{\mathbf{k}}$	171
	4.29	Eintrittssehnenlänge $s_{\rm e}$	172
	4.30	Zerspanbarkeitsklassen MA (nach OTT)	179
	4.31	Spezifische Schnittkraft $k_{\rm s}$	181
	4.32	Schleifkräfte F_t und F_n sowie die bezogenen Werte F_t' und F_n'	185
	4.33	Schleiffaktor $S_{\rm c}$ (nach OTT)	192
	4.34	Schmierfähigkeit (Schmierindex) CL (nach OTT)	194
		Schleifleistung $P_{\rm s}$	
	4.36	Bezogene Schleifleistung $P_{_{\mathrm{S}}}'$	
	4.37	Die Kontaktleistung P_{s}''	
		Spezifische Schleifenergie $U_{\rm s}$	
	4.39	Bezogene Wärmemenge Q'_{wn} (auch als E''_{c} bekannt)	
	4.40	Schleifzeitberechnungen	
	4.41	Relativer Leistungsbedarf in Abhängigkeit des verwendeten KSS	
	4.42	Spezifische Spanmenge Q'_{m} (nach OTT)	
	4.43	Prozess-Berechnungsbeispiele von PUQ, AUQ und IUQ	
		4.42.1 Allgemeine Vorgaben für die folgenden Einstechprozesse	
		4.43.2 Plan-Umfangs-Querschleifen PUQ (Einstechschleifen)	
		4.43.3 Aussenrund-Umfangs-Querschleifen AUQ (Einstechschleifen)	
		4.43.4 Innenrund-Umfangs-Querschleifen IUQ (Einstechschleifen)	
		4.43.5 Wichtige Bemerkung zu den Berechnungsbeispielen	
		Was man aus Formeln erkennen und ableiten kann	
	4.45	Zusammenfassung von Kapitel 4	243
5	Kon	ditionieren von Schleifscheiben (Abrichten, Profilieren)	245
•	5.1	Allgemeines zum Konditionieren	
	5.2	Konditionierwerkzeuge (Übersicht)	
	5.3	Wirkrautiefe R_{ts}	
	5.4	Rautiefenwerte (unterschiedliche Messmethoden)	
	5.5	Wirkbreite $b_{\rm d}$ von stehenden Abrichtwerkzeugen	
	5.6	Überdeckungsgrad $U_{\rm d}$	
	5.7	Stehende Konditionierverfahren – Auswirkung auf die Scheibe	256
	5.8	Abrichtzustellung a_d	257
	5.9	Abricht-Zeitspanvolumen $Q_{\rm d}$	259
	5.10	Einkornabrichtwerkzeuge	260
	5.11	Geschliffene Formdiamantwerkzeuge	263
	5.12	Mehrkorndiamantwerkzeuge	
	5.13	Abrichtplatten (Diamant-Fliesen®)	264
	5.14	Anordnung und Arbeitsrichtung stehender Abrichtwerkzeuge	266
	5.15	Diamant-Igel	267
	5.16	PKD-Abrichtwerkzeuge	268
	5.17	MKD-Platten mit monokristallinen Diamantprismen	268

	5.18	Diamant-Abrichtleiste mit galvanischer Bindung	270
	5.19	Diamant-Block handgesetzt oder galvanisch belegt	271
	5.20	Drehende Konditionierverfahren.	
	5.21	Rollenzustellung, Zustellgeschwindigkeit und Zeitspanvolumen	273
	5.22	Diamant-Topfscheiben mit Druckluftantrieb	
	5.23	Prinzipdarstellung Crushieren und Rolldiamantieren	
	5.24	Stahl- oder Hartmetallprofilrollen (Crushierrollen)	
	5.25	Kleine Crushierscheiben (Stahl und CVD-Verfahren)	
	5.26	Diamant-Abricht- bzw. –Profilrollen	
	5.27	Profilieren mit Diamantspitzscheiben (Diamantformrollen)	
	5.28	Continuous Dressing (CD-Konditionieren mit Diamantrollen)	
	5.29	Zusammenfassung von Kapitel 5	
6	Küh	Ischmierstoffe, Additive, Filter und Anlagen	. 295
	6.1	Stand der Technik – Kühlschmierstoffe, Additive, Filter und Anlagen	. 295
	6.2	Trockenbearbeitung (Hartdrehen versus Schleifen)	299
	6.3	Kühlschmierstoffe (KSS) für die Schleiftechnik	. 302
	6.4	Ungeschmierte und geschmierte vollsynthetische Lösungen	. 304
	6.5	Halbsynthetische und echte Emulsionen	. 306
	6.6	Wasserqualität, Ansetzkonzentrationen und Messmethoden	. 309
		6.6.1 Bestimmung und Überprüfung der KSS-Konzentrierung	314
		6.6.2 Nachfüllmischungen	318
	6.7	Schneid- und Schleiföle	322
	6.8	Additive für Kühlschmierstoffe	. 325
	6.9	Reibpartner - die prinzipiellen Reibungsarten	331
	6.10	Schleifölviskositäten für das Schleifen	. 332
	6.11	Einfluss der KSS-Art und -Schmierwirkung auf die Scheibe	. 332
	6.12	Resümee über die KSS-Schmierfähigkeit und die Auswirkungen	. 335
	6.13	Wo eignen sich die verschiedenen Kühlschmierstoffe?	. 336
	6.14	Zu welchen Schleifkornarten welche Kühlschmierstoffe?	. 338
	6.15	Schleifstoffe und Empfehlungen für die KSS-Schmierfähigkeit	. 339
	6.16	Werkstoffe und die dazu geeigneten Kühlschmierstoffarten	. 339
	6.17	Wie erhöht man die KSS-Standzeit	. 340
	6.18	Hinweise auf dem KSS-Sicherheitsdatenblatt	341
	6.19	Resümee über die Kühlschmierstoffe	. 343
	6.20	Filter und Kühlschmierstoffversorgungsanlagen	. 344
	6.21	Grössenabstufungen von Kühlmittel-Versorgungsanlagen	. 354
	6.22	Zentrale Kühlmittel-Versorgungsanlagen	. 355
	6.23	Rückkühlung der Kühlschmierstoffe	. 356
	6.24	Minimalmengen- und Mindermengenkühlung	. 359
	6.25	Zusammenfassung von Kapitel 6.	361

7	Küh	nlschmierstoffzuführung (Düsen)	363
	7.1	Stand der Technik (KSS-Zuführung)	363
	7.2	Strömungslehre	366
		7.2.1 Reynold'sche Zahl Re	
	7.3	KSS-Strahlgeschwindigkeit $v_{\mathbf{k}}$	
	7.4	Berechnung vom notwendigen Pumpendruck $p_{\mathbf{k}}$	
	7.5	Pumpendimensionierung	
	7.6	Pumpenantriebsleistung P_k	376
	7.7	Dimensionierung der notwendigen KSS-Menge	
	7.8	Leistungsbedarf und Anstieg der Normalkraft F_n	381
	7.9	Berechnung der Düsenaustrittsquerschnittfläche $A_{\rm kn}$	
	7.10	Kühlschmierstoffzuführung zur Schleifscheibe	
	7.11	Übersicht der wichtigsten Arten von Kühlschmierstoffdüsen	
	7.12	Wichtige Hinweise zur Kühlschmierstoffzuleitung	
		7.12.1 Leitungsgrösse in Abhängigkeit der Durchflussmenge	
		7.12.2 Schlauchleitungen in der Kühlschmierstoffzuführung	
		7.12.3 Pulsieren von Zentrifugalpumpen	402
		7.12.4 Druck- und Pumpenleistungsberechnungen	
		7.12.5 Steigleitungen, Fittings, Verschraubungen, Ventile, usw	
	7.13	Praktische Anlagen- und Düsendimensionierung	
	7.14	Beispiele von verschiedenen Düsenbauarten	409
	7.15	Zusammenfassung von Kapitel 7	412
8	Voll	schnittschleifen (Tiefschleifen)	415
	8.1	Allgemeines und Historisches über das Vollschnittschleifen	
	8.2	Vollschnittschleifmaschinen	
	8.3	Die ideale Schleifrichtung beim Vollschnittschleifen	
	8.4	Einige Einflussgrössen und ihre Zusammenhänge	
	8.5	Einfluss der Schnittgeschwindigkeit $v_{\rm c}$	
	8.6	Besonderheiten beim Vollschnittschleifen	
	8.7	Tücken des Vollschnittschleifens.	
	8.8	Schleifscheiben für das Vollschnittschleifen	
	8.9	Oberflächenqualität beim Vollschnittschleifen	
	8.10	Profilierverfahren für Vollschnittschleifscheiben.	
	8.11	Kühlschmierstoffe (KSS) für das Vollschnittschleifen	
	0.11	Ist-Zustand des Vollschnittschleifens und Zukunftsaussichten	
	8.13	Zusammenfassung von Kapitel 8	
	0.10	Zusummomussung von Kuphor o	100
9		ssenrund- und Innenrund-Schälschleifen	
	9.1	Allgemeines zum Aussen- und Innenrundschälschleifen	
	9.2	Aussen- und Innenrund-Längsschleifen	
	9.3	Schälschleifen – eine Alternative zum Hartdrehen	
	94	Aussenrund-Umfangs-Schälschleifen AUL(S)	442

	9.5	Planungs- und Praxishinweise für das Aussenrund-Schälschleifen
		9.5.1 Wichtige Grössen und Zusammenhänge AUL(S)
	9.6	Anwendungshinweise und Beispiele (Schälschleifen)
	9.7	Innenrund-Umfangs-Schälschleifen IUL(S)
	9.8	Praxishinweise für das Innenrund-Schälschleifen
		9.8.1 Wichtige Grössen und Zusammenhänge IUL(S)
	9.9	Schnittgeschwindigkeiten für das Schälschleifen
	9.10	Schleifscheiben für das Schälschleifen
	9.11	Kühlschmierstoffe für das Schälschleifen
	9.12	Anwendungsbeispiel AUL(S)
	9.13	Zusammenfassung von Kapitel 9
10	Нос	hgeschwindigkeitsschleifen (HSG und HEDG)463
	10.1	Allgemeines zum Hochgeschwindigkeitsschleifen
	10.2	Hochgeschwindigkeits- und konventionelles Schleifen
	10.3	Hochgeschwindigkeits- und Hochleistungsschleifen
	10.4	Wärme in der Kontaktzone (Hochgeschwindigkeitsschleifen)
	10.5	Typische Merkmale der Hochgeschwindigkeitstechnologie
	10.6	Anforderungen an Hochgeschwindigkeits-Schleifmaschinen
	10.7	Kühlschmierstoffe für das Hochgeschwindigkeitsschleifen
	10.8	Schleifscheiben für das Hochgeschwindigkeitsschleifen
	10.9	Schleifverfahren und Anwendungsmöglichkeiten
	10.10	Vorteile und Zukunft des Hochgeschwindigkeitsschleifens
	10.11	Darstellung der wichtigsten Hochgeschwindigkeits-Merkmale
	10.12	Hochgeschwindigkeitsschleifen wirtschaftlich relativ definiert
	10.13	Vorteile des Hochgeschwindigkeitsschleifens
	10.14	Planung und Vorbereitung eines HSG-Prozesses
	10.15	Anwendungen der verschiedenen Leistungsverfahren
	10.16	Zusammenfassung von Kapitel 10
11	Wicl	ntige Merkpunkte der Schleiftechnik483
	11.1	Allgemeines zu den Merkpunkten
	11.2	Übersicht "Wichtige Merkpunkte der Schleiftechnik"
	11.3	Zerspanung allgemein und schleiftechnisch
	11.4	Einflussgrössen und ihre Zusammenhänge
	11.5	Wichtige Hinweise zu Schleifscheiben und deren Einsatz
	11.6	Konditionieren (Abrichten und Profilieren)
	11.7	Kühlschmierstoffe (Lösungen, Emulsionen, Schleiföle, Additive)
	11.8	Wartung von Kühlschmierstoffen
	11.9	Filtersysteme und Kühlschmierstoff-Versorgungsanlagen
	11.10	Kühlschmierstoffbemessung und -zuführung (Düsen)
	11.11	Schwingungen, Vibrationen und der Ruck
	11 12	Anfunk-Steuerungen – durch Kraft Leistung oder AE 510

	11.13	Oberflächenrauheitsmessungen	511
	11.14	Aufbauschneiden (Kaltschweissungen)	
	11.15	Schleifkommas – eine schlechte Oberflächenqualität	513
	11.16		
	11.17	Eigenspannungen in der geschliffenen Randzone	
	11.18	Verschiedenes (Merkpunkte)	
		Zusammenfassung von Kapitel 11	
12	Sch	usswort des Autors	525
Anl	nang	A Begriffe, Abkürzungen und Einheiten	529
	A1	Begriffe, Abkürzungen und Einheiten	
	A2	Abkürzungen, Begriffe und Einheiten	
Anl	nang	B Mathematikformeln (Repetitorium)	543
	B1	Mathematikformeln (Repetitorium)	
	В2	Wichtige Vereinbarungen in der Mathematik	
	ВЗ	Mathematische Grundbegriffe – die sieben Grundrechnungsarten	
	B4.0	Umstellung von einfachen Formeln (Gleichungen)	
		B4.1 Formelumstellung von Summen	
		B4.2 Formelumstellung von Subtraktionen	
		B4.3 Formelumstellung von Multiplikationen	
		B4.4 Formelumstellung von Divisionen.	
		B4.5 Formelumstellung von einer Potenz und eines Produkts	548
		B4.6 Formelumstellung einer Potenz und eines Quotienten	548
		B4.7 Formeln mit Produkten, Quotienten, Summen und Differenzen	549
	В5	Griechisches Alphabet	551
	В6	Zusammenfassung des Mathe-Repetitoriums	553
Anl	nang	C Quellenverzeichnis	555
Ind	ex		559