# HANSER



Leseprobe

Frank Hahn

Werkstofftechnik-Praktikum

Werkstoffe prüfen und verstehen

ISBN (Buch): 978-3-446-43258-1

ISBN (E-Book): 978-3-446-44494-2

Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43258-1 sowie im Buchhandel.

# Inhalt

| 1 | The | ermische Analyse – Zustandssysteme                                 | 11 |
|---|-----|--------------------------------------------------------------------|----|
|   | 1.1 | Einleitung                                                         | 11 |
|   | 1.2 | Ziel des Praktikums                                                | 12 |
|   | 1.3 | Theoretische Voraussetzungen                                       | 12 |
|   | 1.4 | Grundlagen                                                         | 13 |
|   |     | 1.4.1 Phasenumwandlungen                                           | 13 |
|   |     | 1.4.2 Keimbildung und -wachstum                                    | 14 |
|   |     | 1.4.3 Legierungsstrukturen                                         | 18 |
|   |     | 1.4.4 Grundtypen der Zweistoffsysteme                              | 21 |
|   |     | 1.4.4.1 Zweistoffsystem mit vollständiger Löslichkeit im flüssigen |    |
|   |     | und im festen Zustand                                              | 24 |
|   |     | 1.4.4.2 Zweistoffsystem mit vollständiger Löslichkeit im flüssigen |    |
|   |     | Zustand und Unlöslichkeit im festen Zustand                        | 29 |
|   |     | 1.4.4.3 Zweistoffsystem mit vollständiger Löslichkeit im flüssigen |    |
|   |     | Zustand und begrenzter Löslichkeit im festen Zustand –             |    |
|   |     | eutektisches System                                                | 33 |
|   |     | 1.4.4.4 Zweistoffsystem mit vollständiger Löslichkeit im flüssigen |    |
|   |     | Zustand und begrenzter Löslichkeit im festen Zustand –             |    |
|   |     | peritektisches System                                              | 36 |
|   |     | 1.4.4.5 Zweistoffsystem mit intermetallischer Phase                | 38 |
|   |     | 1.4.4.6 Phasenumwandlungen im festen Zustand                       | 39 |
|   |     | 1.4.5 Das Gesetz der abgewandten Hebelarme                         | 40 |
|   | 1.5 | Kontrollfragen zur Praktikumsvorbereitung                          | 42 |
|   | 1.6 | Geräte und Hilfsmittel                                             | 43 |
|   | 1.7 | Versuchsdurchführung                                               | 44 |
|   | 1.8 | Praktikumsauswertung                                               | 45 |
| 2 | Zu  | gversuch an metallischen Werkstoffen                               | 46 |
| _ | 2.1 | Einleitung                                                         | 46 |
|   | 2.2 | Ziel des Praktikums                                                | 46 |
|   | 2.3 | Theoretische Voraussetzungen                                       | 47 |
|   | 2.4 | Grundlagen                                                         | 47 |
|   |     | 2.4.1 Kraft und Spannung                                           | 47 |
|   |     | 2.4.2 Verlängerung und Dehnung                                     | 49 |
|   |     | 2.4.3 Zugproben                                                    | 50 |
|   |     | 2.4.4 Verfahrensprinzip                                            | 52 |
|   |     | 2.4.5 Zugversuch – Verformungsbereiche und Auswertung              | 56 |
|   | 2.5 | Kontrollfragen zur Praktikumsvorbereitung                          | 62 |
|   |     |                                                                    |    |

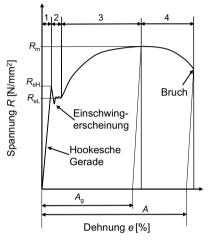
|   | <ul><li>2.6</li><li>2.7</li><li>2.8</li><li>2.9</li></ul> | Geräte und Hilfsmittel65Versuchsdurchführung65Praktikumsauswertung65Modelllösungen65                                              | 3<br>5 |  |  |  |
|---|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| 3 | Metallographische Probenpräparation und lichtmikroskopi-  |                                                                                                                                   |        |  |  |  |
|   | sch                                                       | e Gefügeuntersuchung gleichgewichtsnah umgewandelter                                                                              |        |  |  |  |
|   | Stä                                                       | hle                                                                                                                               | 0      |  |  |  |
|   | 3.1                                                       | Einleitung                                                                                                                        | 0      |  |  |  |
|   | 3.2                                                       | Ziel des Praktikums                                                                                                               | 1      |  |  |  |
|   | 3.3                                                       | Theoretische Voraussetzungen                                                                                                      | 1      |  |  |  |
|   | 3.4                                                       | Grundlagen 72                                                                                                                     | 2      |  |  |  |
|   |                                                           | 3.4.1 Die metallographische Probenpräparation                                                                                     | 2      |  |  |  |
|   |                                                           | 3.4.1.1 Trennen                                                                                                                   | 3      |  |  |  |
|   |                                                           | 3.4.1.2 Einfassen                                                                                                                 | 5      |  |  |  |
|   |                                                           | 3.4.1.3 Schleifen und Polieren                                                                                                    | 6      |  |  |  |
|   |                                                           | 3.4.1.4 Reinigen und Trocknen der Probe                                                                                           | 8      |  |  |  |
|   |                                                           | 3.4.1.5 Aufbau und Einstellung des Auflichtmikroskops                                                                             |        |  |  |  |
|   |                                                           | 3.4.1.6 Vergrößerung 84                                                                                                           |        |  |  |  |
|   |                                                           | 3.4.1.7 Auflösungsgrenzen der Lichtmikroskopie                                                                                    |        |  |  |  |
|   |                                                           | 3.4.1.8 Gesamte förderliche Vergrößerung                                                                                          |        |  |  |  |
|   |                                                           | 3.4.1.9 Kontrastierungsverfahren                                                                                                  |        |  |  |  |
|   |                                                           | 3.4.2 Das metastabile Zweistoffsystem Eisen-Kohlenstoff                                                                           |        |  |  |  |
|   |                                                           | 3.4.2.1 Reineisen                                                                                                                 |        |  |  |  |
|   |                                                           | 3.4.2.2 Phasen im metastabilen Zweistoffsystem Eisen-Kohlenstoff 90                                                               |        |  |  |  |
|   |                                                           | 3.4.2.3 Gefüge im metastabilen Zweistoffsystem Eisen-Kohlenstoff 99 3.4.2.4 Die Stahlecke im Eisen-Kohlenstoff-Diagramm – Gefüge- | 9      |  |  |  |
|   |                                                           | umwandlung des Austenits bei der Abkühlung im thermo-                                                                             |        |  |  |  |
|   |                                                           | dynamischen Gleichgewicht                                                                                                         | 1      |  |  |  |
|   | 3.5                                                       | Kontrollfragen zur Praktikumsvorbereitung                                                                                         |        |  |  |  |
|   | 3.6                                                       | Geräte und Hilfsmittel                                                                                                            |        |  |  |  |
|   | 3.7                                                       | Versuchsdurchführung                                                                                                              |        |  |  |  |
|   | 3.8                                                       | Praktikumsauswertung                                                                                                              |        |  |  |  |
| _ |                                                           | · ·                                                                                                                               |        |  |  |  |
| 4 |                                                           | teprüfung                                                                                                                         |        |  |  |  |
|   | 4.1                                                       | Einleitung                                                                                                                        |        |  |  |  |
|   | 4.2                                                       |                                                                                                                                   |        |  |  |  |
|   | 4.3                                                       | Theoretische Voraussetzungen                                                                                                      |        |  |  |  |
|   | 4.4                                                       | Grundlagen                                                                                                                        |        |  |  |  |
|   |                                                           | 4.4.1 Überblick                                                                                                                   |        |  |  |  |
|   |                                                           | 4.4.2 Härteprüfung nach Brinell HBW                                                                                               |        |  |  |  |
|   |                                                           | 4.4.3 Härteprüfung nach Vickers HV                                                                                                |        |  |  |  |
|   | 4 -                                                       | 4.4.4 Härteprüfung nach Rockwell Skala C HRC                                                                                      |        |  |  |  |
|   | 4.5                                                       | Kontrollfragen zur Praktikumsvorbereitung                                                                                         |        |  |  |  |
|   | 4.6                                                       | Geräte und Hilfsmittel                                                                                                            | O      |  |  |  |

|   | 4.7 | Versuchsdurchführung                                                | . 126 |
|---|-----|---------------------------------------------------------------------|-------|
|   | 4.8 |                                                                     |       |
|   | 4.9 | Modelllösungen                                                      | . 130 |
| 5 | Grı | undlagen der Wärmebehandlung von Stählen                            | 134   |
|   | 5.1 |                                                                     |       |
|   | 5.2 |                                                                     |       |
|   | 5.3 |                                                                     |       |
|   | 5.4 |                                                                     |       |
|   | 0.1 | 5.4.1 Einfluss der Abkühlgeschwindigkeit auf die Gefüge von Stählen |       |
|   |     | 5.4.1.1 Das Dilatometerverfahren                                    |       |
|   |     | 5.4.1.2 Diffusionsgesteuerte Umwandlung des Austenits bei leicht    | . 100 |
|   |     | erhöhter Abkühlgeschwindigkeit                                      | 137   |
|   |     | 5.4.1.3 Die Martensitbildung                                        |       |
|   |     | 5.4.1.4 Die Bainitbildung                                           |       |
|   |     | 5.4.1.5 Das Zeit-Temperatur-Umwandlungdiagramm                      |       |
|   |     | 5.4.1.6 Einfluss von Legierungselementen auf die Umwandlung der     |       |
|   |     | Austenits bei der Abkühlung                                         |       |
|   |     | 5.4.2 Wärmebehandlung von Stahl                                     |       |
|   |     | 5.4.2.1 Begriffserklärung                                           |       |
|   |     | 5.4.2.2 Das Normalglühen                                            |       |
|   |     | 5.4.2.3 Das Härten                                                  |       |
|   |     | 5.4.2.4 Charakterisierung der Härtbarkeit                           |       |
|   |     | 5.4.2.5 Anlassverhalten von Stählen                                 |       |
|   | 5.5 |                                                                     |       |
|   | 5.6 |                                                                     |       |
|   | 5.7 |                                                                     |       |
|   | 5.8 |                                                                     |       |
|   | 5.9 |                                                                     |       |
| _ |     | · ·                                                                 |       |
| 6 | Ke  | rbschlagbiegeversuch nach Charpy                                    |       |
|   | 6.1 | Einleitung                                                          | . 178 |
|   | 6.2 |                                                                     |       |
|   | 6.3 | Theoretische Voraussetzungen                                        | . 179 |
|   | 6.4 |                                                                     |       |
|   |     | 6.4.1 Zähigkeit und Sprödigkeit                                     | . 180 |
|   |     | 6.4.2 Der Kerbschlagbiegeversuch nach Charpy                        |       |
|   |     | 6.4.3 Sprödes Werkstoffverhalten beim KBV                           |       |
|   |     | 6.4.4 Duktiles Werkstoffverhalten beim KBV                          |       |
|   |     | 6.4.5 Der Bruch beim KBV                                            | . 190 |
|   |     | 6.4.5.1 Sprödbruch (Spaltbruch)                                     | . 190 |
|   |     | 6.4.5.2 Verformungsbruch                                            | . 193 |
|   |     | 6.4.5.3 Mischbruch                                                  |       |
|   |     | 6.4.6 Einflüsse auf die Zähigkeit                                   | . 196 |
|   |     | 6.4.7 Das Temperaturkonzept                                         |       |
|   | 6.5 | Kontrollfragen zur Praktikumsvorbereitung                           | . 200 |

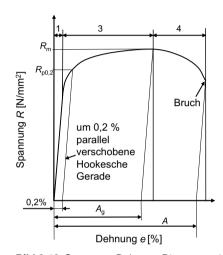
| 6.6    | Geräte und Hilfsmittel                                             |       |
|--------|--------------------------------------------------------------------|-------|
| 6.7    | Versuchsdurchführung                                               | . 201 |
| 6.8    | Praktikumsauswertung                                               | . 204 |
| 6.9    | Modelllösungen                                                     | . 205 |
| 7 Err  | nüdung und Schwingfestigkeit                                       | 207   |
| 7.1    | Einleitung                                                         | . 207 |
| 7.2    | Ziel des Praktikums                                                | . 208 |
| 7.3    | Theoretische Voraussetzungen                                       | . 208 |
| 7.4    | Grundlagen                                                         | . 208 |
|        | 7.4.1 Ermüdung                                                     |       |
|        | 7.4.2 Rissbildung und -wachstum unter schwingender Beanspruchung – |       |
|        | Merkmale des Dauerbruchs                                           | . 211 |
|        | 7.4.3 Mechanische Schwingungen                                     | . 214 |
|        | 7.4.4 Einstufige Schwingfestigkeitsuntersuchungen – Wöhlerversuch  | . 215 |
|        | 7.4.4.1 Ermittlung der Überlebenswahrscheinlichkeit im Bereich     |       |
|        | der Zeitfestigkeit                                                 | . 218 |
|        | 7.4.4.2 Bestimmung der Dauerfestigkeit unter Berücksichtigung      |       |
|        | des Streubandes im Übergangsbereich                                | . 222 |
|        | 7.4.5 Angabe der Dauerfestigkeit                                   | . 229 |
|        | 7.4.6 Dauerfestigkeitsschaubild nach Smith                         | . 229 |
|        | 7.4.7 Einflüsse auf die Schwingfestigkeit                          | . 231 |
| 7.5    | Kontrollfragen zur Praktikumsvorbereitung                          | . 233 |
| 7.6    | Geräte und Hilfsmittel                                             | . 234 |
| 7.7    | Versuchsdurchführung                                               | . 234 |
| 7.8    | Praktikumsauswertung                                               | . 239 |
| 7.9    | Modelllösungen                                                     | . 239 |
| Anhang | – Lösungsteil                                                      | 248   |
| Index  |                                                                    | 257   |

## Vorwort

Das Fach "Werkstofftechnik" ist Bestandteil vieler technischer Studienrichtungen, wie z. B. Maschinen- und Fahrzeugbau, Mechatronik, Wirtschaftsingenieurwesen. Darüber hinaus werden Auszubildende in zahlreichen Lehrberufen mit den Grundlagen der Werkstofftechnik vertraut gemacht. Ziel der Ausbildung ist es, fundamentale Zusammenhänge über Zusammensetzung, Struktur, Gefüge und Eigenschaften zu vermitteln, um im späteren Berufsleben eine zielgerichtete Bearbeitung und einen verantwortlichen und Ressourcen schonenden Einsatz der Werkstoffe zu gewährleisten.


An den Universitäten, Fachhochschulen und Berufsakademien werden die theoretischen Grundlagen in Vorlesungen und Seminaren vermittelt. Ein integriertes Praktikum soll die Studierenden/Auszubildenden mit den Methoden der Werkstoffprüfung vertraut machen. Dabei werden Werkstoffkennwerte bestimmt und die Ursachen für die Eigenschaften ermittelt und besprochen. Die oft komplexen Zusammenhänge lassen sich mit den durchgeführten Experimenten leichter verstehen und erlauben einen fachübergreifenden Überblick, erfordern aber eine ausreichende Vorbereitung von den Praktikumsteilnehmern.

An dieser Stelle setzt das vorliegende Buch an. Neben einer detaillierten Beschreibung des experimentellen Vorgehens sollen insbesondere die physikalischen, chemischen, mathematischen und die werkstofftechnischen Grundlagen gefestigt werden. Die Fragen zur Versuchsvorbereitung dienen der Überprüfung des Wissensstandes und können mit den Antworten im Anhang verglichen werden. Die Versuche werden in dieser Form seit einigen Jahren an der Hochschule Mittweida von den Studierenden der technischen Fachrichtungen durchgeführt und sind für eine Praktikumsdauer von je drei Stunden ausgelegt. Die Werkstoffe und Aufgaben können an anderen Ausbildungsorten variieren, aber die Vorbereitung und der Weg zur Lösung sind in der Regel identisch. Modelllösungen, vorbereitete Tabellen für die Messwerterfassung und Auswerteroutinen sollen nicht nur die Auswertung vereinfachen, sie sollen auch aufzeigen, dass bei der Werkstoffprüfung alle relevanten Daten und Fakten zur Probe, zum Werkstoff und Versuchsablauf erfasst werden müssen, um eine spätere Beurteilung der Versuchsergebnisse zu erlauben.


Besonderer Dank gilt Herrn Dipl.-Ing. Wolfgang Seidel, der mich zum Schreiben des Buches ermuntert und den Text kritisch durchgesehen hat. Ich danke Herrn Andreas Eysert von der Hochschule Mittweida für die zahlreichen metallographischen Aufnahmen und für den fachlichen Rat beim Kapitel "Metallographie", Frau Angela Bergner für die Unterstützung bei der Erstellung der Grafiken und Herrn Enrico Gehrke für die rasterelektronenmikroskopischen Aufnahmen. Frau Christine Fritzsch vom Hanser Verlag möchte ich für die redaktionelle Durchsicht, die Förderung des Buches und die stetige Ermutigung danken.

## 2.4.5 Zugversuch – Verformungsbereiche und Auswertung

Die während des Zugversuchs gemessenen Kräfte und Verlängerungen werden in Spannung und Dehnung umgerechnet und als Spannung-Dehnung-Diagramm dargestellt. Bei metallischen Werkstoffen wird beim Spannung-Dehnung-Verhalten zwischen Werkstoffen mit ausgeprägter Streckgrenze (Bild 2-9) und Werkstoffen mit gleichmäßigem Übergang von der elastischen zur elastisch-plastischen Verformung (Bild 2-10) unterschieden.



**Bild 2-9** Spannung-Dehnung-Diagramm eines Werkstoffs mit ausgeprägter Streckgrenze



**Bild 2-10** Spannung-Dehnung-Diagramm eines Werkstoffs ohne ausgeprägte Streckgrenze

- 1 Bereich der elastischen Verformung
- 2 Bereich der Lüdersdehnung
- 3 Bereich der Gleichmaßdehnung
- 4 Bereich der Brucheinschnürung

ReH obere Streckgrenze

ReL untere Streckgrenze

R<sub>p0,2</sub> 0,2 %-Dehngrenze (Dehngrenze bei plastischer Extensometerdehnung von 0,2 %)

R<sub>m</sub> Zugfestigkeit

A<sub>a</sub> Gleichmaßdehnung

A Bruchdehnung

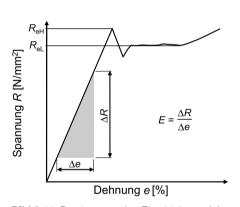
Im Werkstoffverhalten lassen sich drei bzw. vier Verformungsbereiche unterscheiden:

#### 1. Bereich der elastischen Verformung

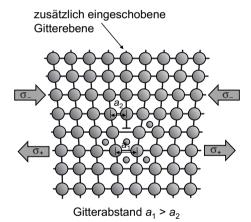
Die Spannung steigt über der Dehnung linear an. Dieser Bereich wird auch als Hookesche Gerade bezeichnet. Hier gilt das Hookesche Gesetz mit:

$$\sigma = E \cdot \varepsilon$$
 (2-6)

- $\sigma$  wahre Spannung in N/mm<sup>2</sup> oder MPa
- E Elastizitätsmodul in N/mm<sup>2</sup>
- $\varepsilon$  wahre Dehnung; auch Formänderung oder logarithmische Formänderung


Da bei sehr kleinen Verformungen wahre und technische Spannung aber auch (technische) Dehnung und wahre Dehnung praktisch identisch sind, kann das Hookesche Gesetz übertragen werden:

$$R = E \cdot e \tag{2-7}$$


- R technische Spannung in N/mm<sup>2</sup> oder MPa
- E Elastizitätsmodul in N/mm<sup>2</sup>
- e (technische) Dehnung (einheitenlos Zur Bestimmung des E-Moduls wird die Dehnung als Absolutwert und nicht in Prozent eingesetzt!)

Aus mathematischer Sicht entspricht der Elastizitätsmodul E dem Anstieg der Hookeschen Geraden. Er kann im Bereich der elastischen Verformung über das Anstiegsdreieck  $\Delta R/\Delta e$  bestimmt werden (Bild 2-11). Der Elastizitätsmodul ist für jeden Werkstoff charakteristisch (z. B. Stahl:  $E=210\,000\,\mathrm{N/mm^2}$ ; Aluminium:  $E=75\,000\,\mathrm{N/mm^2}$ ).

*Hinweis*: In der DIN EN ISO 6892-1 hat der Anstieg der Hookeschen Geraden das Symbol  $m_{\rm E}$ . Der Anstieg der Hookeschen Geraden entspricht nur dann dem Elastizitätsmodul, wenn das Messsystem sehr genau ist und die Zugprobe exakt axial ausgerichtet ist. Diese Differenzierung soll hier aber nicht weiter berücksichtigt werden.



**Bild 2-11** Bestimmung des Elastizitätsmoduls aus dem Anstieg der Hookeschen Geraden



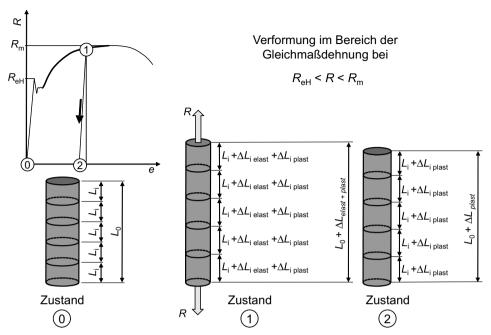
**Bild 2-12** Interstitiell gelöste Fremdatome lagern sich bevorzugt im Zugspannungsfeld von Versetzungen ein (Cotrell-Wolke) und behindern die Versetzungsbewegung

Wird eine Zugprobe langsam belastet und die Streckgrenze  $R_{\rm eH}$  wird nicht überschritten, so geht die Probe bei Entlastung augenblicklich in ihre Ausgangslage zurück. Die gemessene Verlängerung/Dehnung ist im Bereich der elastischen Verformung reversibel.

#### 2. Bereich der Lüdersdehnung

Die obere Streckgrenze  $R_{\rm eH}$  kennzeichnet den Übergang von der elastischen zur elastischen plastischen Verformung. Wird die Streckgrenze überschritten, steigt die Spannung nicht mehr proportional zur Dehnung an. Wird dann die Probe entlastet, geht sie nicht mehr in die Ausgangslage zurück. Neben dem elastischen Verformungsanteil treten auch bleibende,

also plastische Verformungsanteile auf. Für Werkstoffe mit ausgeprägter Streckgrenze (Bild 2-9 und Bild 2-11) ist es typisch, dass nach dem Erreichen der oberen Streckgrenze  $R_{\rm eH}$  die Spannung zunächst konstant bleibt oder sogar auf ein niedrigeres Niveau, die untere Streckgrenze  $R_{\rm eL}$ , abfällt. Diese Erscheinung ist auf das kombinierte Wirken von Einlagerungsatomen (C, N) und Versetzungen zurückzuführen. Unterhalb von zusätzlich eingeschobenen Gitterebenen (Stufenversetzung) ist das Kristallgitter aufgeweitet und die Zwischengitterplätze sind etwas größer als in ungestörten Gitterbereichen. Deshalb sammeln sich kleine Einlagerungsatome bevorzugt im Zugspannungsfeld von Versetzungen und behindern aber dadurch die Versetzungsbewegung. Diese Ansammlung von Einlagerungsatomen im Zugspannungsbereich von Versetzungen wird als Cotrell-Wolke bezeichnet (Bild 2-12). Erst wenn die obere Streckgrenze erreicht ist, können sich die Versetzungen von den Einlagerungsatomen lösen. Da für die weitere Bewegung weniger Energie notwendig ist, fällt die Spannung bis auf den Wert der unteren Streckgrenze  $R_{\rm eL}$  ab. Im Bereich der Lüdersdehnung ist die Verformung über die Messlänge inhomogen und örtlich konzentriert (Lüdersband). Mit zunehmender plastischer Verformung wandert dieser Bereich durch die ganze Probe.


Viele Werkstoffe wie z. B. kaltverformte Stähle, Stähle ohne interstitiell gelöste Fremdatome oder viele kfz-Metalle wie Aluminium- und Kupferlegierungen oder austenitische Stähle zeigen keinen ausgeprägten Streckgrenzeneffekt sondern besitzen einen ganz allmählichen Übergang von der elastischen zur elastisch-plastischen Verformung. Der Bereich der Lüdersdehnung fehlt. Da der Beginn des plastischen Fließens nicht exakt bestimmt werden kann, wird anstelle der Streckgrenze die Dehngrenze  $R_p$  (Dehngrenze bei plastischer Extensometerdehnung) ermittelt. Ausgehend von der Annahme, dass eine sehr kleine plastische Dehnung (z. B. 0,2 %) zulässig ist, wird die Spannung ermittelt, die notwendig ist, diese sehr kleine plastische Verformung zu erreichen. Diese Spannung wird als Dehngrenze  $R_p$  bezeichnet. Das Symbol der Dehngrenze wird ergänzt durch den Betrag der plastischen Verformung in Prozent, z. B.  $R_{p0,2}$ . Die Dehngrenze wird durch Parallelverschiebung der Hookeschen Geraden bis zur Extensometerdehnung von e=0,2% ermittelt (Bild 2-10). Der Schnittpunkt der parallel-verschobenen Geraden mit dem Spannung-Dehnung-Verlauf entspricht der Dehngrenze  $R_{p0,2}$ .

#### 3. Bereich der Gleichmaßdehnung (gleichmäßig plastische Verformung)

Der Bereich der Gleichmaßdehnung ist erreicht, wenn die Zugprobe über die gesamte Messlänge homogen verformt wird. Wird die Verformung in diesem Bereich unterbrochen und die Länge der Einzelsegmente  $L_i$  wird an verschiedenen Stellen der Messlänge überprüft, dann wird die gleiche Verlängerung der Einzelsegmente  $\Delta L_i$  festgestellt (Bild 2-13).

Dabei ist zu beachten, dass sich die Verlängerung  $\Delta L_{\rm i}$  aus einem elastischen und einem plastischen Verformungsanteil zusammensetzt. Natürlich folgt daraus, dass die Querschnittsabnahme auch an jeder Stelle im Bereich der Messlänge identisch sein muss. Wird die Belastung nicht nur unterbrochen, sondern die Probe wird komplett entlastet, dann lässt sich eine elastische Rückfederung feststellen. Die Verformung ist also keine "reine" plastische Verformung sondern ist elastisch-plastisch.

Im Bereich der Gleichmaßdehnung steigt die Spannung mit zunehmender Verformung an. Obwohl während des Zugversuchs der tragende Querschnitt stetig abnimmt, werden mit zunehmender Verformung höhere Spannungen benötigt, um das plastische Fließen aufrecht zu erhalten. Dieser Effekt ist auf die Verformungsverfestigung zurückzuführen. Die plastische Verformung von metallischen Werkstoffen beruht i. Allg. auf Versetzungsbewegung.



**Bild 2-13** Gleichmaßdehnung – Jedes Segment  $L_1$  innerhalb der Messlänge  $L_0$  verlängert sich um den gleichen Betrag  $\Delta L_1$ . Unter der Wirkung der technischen Spannung R setzt sich die Formänderung aus einem elastischen und einem plastischen Anteil zusammen (Zustand 1). Wird die Zugprobe entlastet verbleibt nur der plastische Verformungsanteil (Zustand 2).

Versetzungsbewegung ist immer mit Versetzungsvervielfachung verbunden. Je mehr Versetzungen im Werkstoff enthalten sind, um so stärker behindern sich diese in der Beweglichkeit. Die höchste (technische) Spannung, die während des Zugversuchs auftritt, wird als Zugfestigkeit R. bezeichnet Sie schließt den Bereich der gleichmäßig plastischen Verformung ab

tigkeit  $R_{\rm m}$  bezeichnet. Sie schließt den Bereich der gleichmäßig plastischen Verformung ab. Die Zugfestigkeit lässt sich aus der Höchstkraft  $F_{\rm m}$  und der Anfangsquerschnittsfläche  $S_0$  berechnen:

$$R_{\rm m} = \frac{F_{\rm m}}{S_0} \tag{2-8}$$

R<sub>m</sub> Zugfestigkeit in N/mm<sup>2</sup> oder MPa

F<sub>m</sub> Höchstkraft in N

S<sub>0</sub> Anfangsquerschnittsfläche in mm<sup>2</sup>

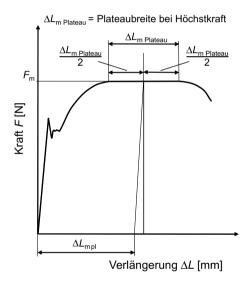
Der wichtigste Verformungskennwert, der im Bereich der gleichmäßig plastischen Verformung ermittelt werden kann, ist die Gleichmaßdehnung  $A_{\rm g}$  (= plastische Extensometer-Dehnung bei Höchstkraft). Die Gleichmaßdehnung entspricht dem Anteil der plastischen Verformung an der Dehnung e beim Erreichen der Zugfestigkeit  $R_{\rm m}$ . Die Gleichmaßdehnung wird in der Regel grafisch ermittelt, indem die Hookesche Gerade bis zur Zugfestigkeit  $R_{\rm m}$  parallel verschoben wird (Bild 2-9 und Bild 2-10). Der Schnittpunkt der parallel verschobenen Gerade mit der Abszisse entspricht der Gleichmaßdehnung. Eine rechnerische Bestimmung ist möglich, wenn der Anteil der elastischen Verformung mithilfe des Hookeschen Ge-

setzes aus der Zugfestigkeit ermittelt wird und von der Gesamtdehnung bei  $R_{\rm m}$  abgezogen wird:

$$\Delta A_{\rm g} = \frac{\Delta L_{\rm m}}{L_{\rm e}} - \frac{R_{\rm m}}{E} \tag{2-9}$$

Ag Gleichmaßdehnung in %

 $\Delta L_{
m m}$  Verlängerung der Extensometermesslänge bei Höchstkraft in mm


Le Anfangsmesslänge der Längenmesseinrichtung (Extensometer) in mm

 $R_{\rm m}$  Zugfestigkeit in N/mm<sup>2</sup>

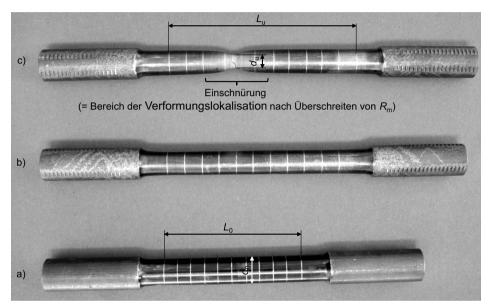
E Elastizitätsmodul in N/mm<sup>2</sup>

*Hinweis*: Unterscheidet sich der ermittelte Anstieg der Hookeschen Geraden  $m_{\rm E}$  vom Elastizitätsmodul E (z. B. bei ungenauer Ausrichtung der Probe), wird der elastische Anteil mit  $R_{\rm m}/m_{\rm E}$  berechnet.

Oftmals bleibt die Höchstkraft über einen Verformungsbereich praktisch konstant (Bild 2-14). In solchen Fällen wird die Gleichmaßdehnung  $A_{\rm g}$  bzw. die Verlängerung der Extensometermesslänge  $\Delta L_{\rm m}$  in die Mitte des Plateaus gelegt.



**Bild 2-14** Weist die Kraft-Verlängerung-Kurve ein Plateau bei der Höchstkraft auf, wird zur Bestimmung der Gleichmaßdehnung die Mitte des Plateaus verwendet


#### 4. Bereich der Brucheinschnürung

Wird die Zugfestigkeit  $R_{\rm m}$  überschritten, beginnt sich die Zugprobe einzuschnüren. Eine weitere Verlängerung und Querschnittsabnahme erfolgt bis zum Bruch nur noch im Bereich der Einschnürung. Alle Werkstoffsegmente, die zur Messlänge gehören, sich aber außerhalb der Einschnürung befinden, verformen sich nicht weiter. Die Verformung ist also lokal begrenzt (Bild 2-15). Die plastische Dehnung zum Zeitpunkt des Bruches wird als Bruchdehnung A bezeichnet. Sie kann aus dem Spannung-Dehnung-Diagramm durch Parallelverschiebung der Hookeschen Geraden bis zur Bruchspannung ermittelt werden (Bild 2-9 und Bild 2-10). Außerdem ist es möglich, die Bruchdehnung A aus der geänderten Probengeometrie zu bestimmen. Dazu ist es erforderlich, die beiden gebrochenen Hälften der Probe in

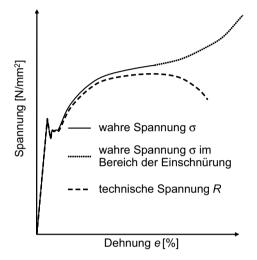
einer Achse sorgfältig zusammenzulegen und die Messlänge nach dem Bruch  $L_{\rm u}$  zu bestimmen (Bild 2-15c). Die Bruchdehnung wird wie folgt berechnet:

$$A = \frac{L_{\rm u} - L_{\rm 0}}{L_{\rm 0}} \cdot 100\% \tag{2-10}$$

- A Bruchdehnung in %
- L<sub>u</sub> Messlänge nach dem Bruch in mm
- L<sub>0</sub> Anfangsmesslänge in mm



**Bild 2-15** Unterschiedlich gedehnte Zugproben; a) unverformt; b) im Bereich der Gleichmaßdehnung verformte Zugprobe; c) gebrochene Probe


Außerdem wird aus der Änderung der Probengeometrie die Brucheinschnürung Z berechnet. Sie ist die größte Querschnittsänderung der Zugprobe im Bereich der Einschnürung, bezogen auf die Anfangsquerschnittsfläche  $S_0$ . Dafür muss bei Rundzugproben der kleinste Durchmesser nach dem Bruch  $d_{\rm u}$  gemessen werden, welcher an der Bruchstelle vorliegt (Bild 2-15c).

$$Z = \frac{S_{\rm u} - S_0}{S_0} \cdot 100\% \tag{2-11}$$

- Z Brucheinschnürung in %
- S<sub>0</sub> Anfangsquerschnittsfläche in mm<sup>2</sup>
- $S_{\rm u}$  Querschnittsfläche nach dem Bruch in mm $^2$

An Flachzugproben mit großer Breite und geringer Dicke (dünne Bleche) ist es in der Regel nicht möglich, die Brucheinschnürung zu ermitteln. Ein Riss bildet sich in der Mitte der Probe und weitet sich linsenartig in der Mitte der Bruchebene bis zur endgültigen Materialtrennung immer weiter auf. Diese allmähliche Bruchbildung führt zu lokal unterschiedlichen Probendicken nach dem Bruch b $_{\rm u}$  und einer nicht definierbaren Probenbreite  $a_{\rm u}$ .

Am Spannung-Dehnung-Diagramm fällt auf, dass die Kraft F bzw. die Spannung R nach dem Überschreiten der Zugfestigkeit  $R_{\rm m}$  abfällt. Dennoch gibt es auch weiterhin Verformungsverfestigung, die allerdings auf den Werkstoff im Bereich der Einschnürung konzentriert bleibt. Wird die gemessene Kraft F auf den augenblicklich kleinsten Querschnitt A und nicht auf die Anfangsquerschnittsfläche  $S_0$  bezogen, also die wahre Spannung  $\sigma$  ermittelt und über der Dehnung aufgetragen, wird deutlich, dass auch nach dem Überschreiten der Zugfestigkeit die Spannung weiter ansteigt (Bild 2-16).



**Bild 2-16** Vergleich der technischen und der wahren Spannung im Zugversuch

# 2.5 Kontrollfragen zur Praktikumsvorbereitung

Überprüfen Sie Ihr Vorwissen anhand der folgenden Kontrollfragen! Sie können ihre Antworten mit den Lösungen im Anhang des Buches vergleichen.

- 2.5-1 Welche Ursache hat die plastische Verformung bei metallischen Werkstoffen?
- 2.5-2 Warum sind Metalle mit kubisch-flächenzentriertem Gitter besser verformbar als hexagonal-dichtestgepackte Metalle?
- 2.5-3 Welche Ursache hat die Verformungsverfestigung?
- 2.5-4 Warum werden im Zugversuch die gemessenen Kräfte in Spannungen umgerechnet?
- 2.5-5 Definieren Sie die Begriffe Festigkeit, Verformbarkeit und Zähigkeit.
- 2.5-6 Welche Phasen und Gefüge liegen im gleichgewichtsnahen Zustand bei Raumtemperatur bei den Stählen C45, C80 und C130 vor?
- 2.5-7 Was ist unter den Wärmebehandlungsverfahren Normalglühen, Härten und Vergüten zu verstehen? Welche Gefüge entstehen beim Stahl C45 bei diesen Verfahren?

Überprüfen Sie Ihr Wissen zu folgenden Punkten:

- diffusionsgesteuerte Phasenumwandlung (1.2.1)
- Keimbildung und Keimwachstum (1.2.3)
- Einlagerungs- und Austauschmischkristalle (2.1.1)
- Zustandssysteme/Grundtypen der Zweistoffsysteme (2.2.2)
- Begriffe: Phase und Gefüge (1.2.1, 2.1.4)
- Kristall, Kristallit, Korn, Korngrenze, Phasengrenze (1.1.2.3)
- Gefügeanalyse, Materialographie, Metallographie (12.4)
- Stahl, untereutektoider und übereutektoider Stahl (6.1.1 und 6.1.2)
- Normalglühen (4.2.1.3)

Die Hersteller von Präparationsgeräten und den dazugehörigen Verbrauchsmaterialien aber auch Hochschulen und die Deutsche Gesellschaft für Materialkunde bieten eine umfangreiche Unterstützung in Form von Büchern, Broschüren, Linksammlungen zum Thema Metallographie/Materialographie, Lehrgänge oder Onlinehilfen bei der Wahl der Präparationstechnik an. An grundlegender Fachliteratur zum Thema Präparationstechniken können folgende Publikationen empfohlen werden:

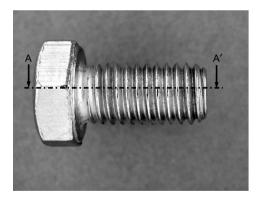
Oettel, H.; Schumann, H.: Metallografie. – 15. Auflage. – Wiley-VCH, 2011 Bjerregaard, L.; Geels, K.; Ottesen, B.; Rückert, M.: Metalog Guide. – Struers A/S, 2000 SumMet – Die Summe unserer Erfahrung, Hrsg.: Buehler, An ITW Company, 2007

# 3.4 Grundlagen

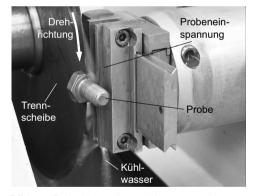
## 3.4.1 Die metallographische Probenpräparation

In der Praxis ist es die Regel, dass die Werkstücke, für deren Gefüge wir uns interessieren, für eine lichtmikroskopische Gefügeuntersuchung viel zu groß sind. Deshalb muss zunächst eine Probe hergestellt werden. Eine Probe ist ein Teil einer Werkstoffmenge oder eines Werkstücks, von dem angenommen wird, dass es die Eigenschaften dieser Menge aufweist. An dieser Probe können also die Eigenschaften des gesamten Werkstoffs untersucht werden. Dafür muss die Probe dem Werkstück entnommen und präpariert werden. Die Wahl der effektivsten Präparationstechnik setzt eine große praktische Erfahrung voraus. Eine falsche Präparationstechnik verändert den Werkstoffzustand (z. B. thermische Beeinflussung beim Schneidbrennen), kann die Probe zerstören (z. B. Bruch von spröden Werkstoffen), begünstigt das Abplatzen von Schichten und das Ausbrechen spröder Partikel oder führt zu Fehlinterpretationen bei der Gefügebeurteilung (z. B. Eindrücken von Schleifpartikeln in Werkstoffe mit geringer Härte, plastische Verformung an Trenn- und Schliffflächen = Beilby-Schicht). Beim Anfertigen eines metallographischen Schliffs ist darauf zu achten, dass:

- die Kanten des Schliffs beim Schleifen/Polieren nicht abgerundet werden,
- kein Oberflächenrelief entsteht, indem weichere Gefügebestandteile stärker abgetragen werden,
- bei beschichteten Werkstücken immer von der Schicht zum Substratmaterial zu trennen und zu schleifen ist, um das Abplatzen der Schicht zu verhindern,
- zwischen den Bearbeitungsschritten eine gründliche Reinigung der Probe erfolgt.


Die Probenpräparation setzt sich aus den Schritten Trennen, Einfassen, Schleifen, Polieren und Ätzen zusammen. Zwischen den einzelnen Präparationsschritten werden die Proben gründlich gereinigt. Bevor mit der eigentlichen Präparation begonnen werden kann, sind im Protokoll wichtige Probendetails festzuhalten:

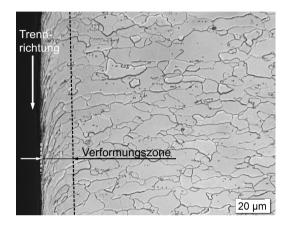
- Werkstücknummer
- Art des untersuchten Werkstücks
- Werkstoff/Werkstoffzustand
- Lage der anzufertigenden Schliffe im Werkstück mit Schliff- bzw. Probennummer
- Arbeitsaufgabe
- Name des Prüfers
- Datum


Später sind im Protokoll die Präparationstechnik und -parameter, die Art der Ätzlösung und die Dauer der Ätzung zu dokumentieren.

#### 3.4.1.1 Trennen

In der Regel muss dem Bauteil/Werkstück/Halbzeug durch Trennen eine Probe entnommen werden. Diese Probe muss das Gefüge des untersuchten Materials repräsentieren. Herstellungsbedingt können richtungsabhängige Gefügeunterschiede auftreten (z. B. Quer- oder Längsschliff bei kaltgezogenen Drähten). Deshalb ist vor der Probenentnahme auf einem Foto oder einer Skizze die Probenlage im Bauteil und die Lage der Schlifffläche zu dokumentieren (Bild 3-1). Für die Trennung können verschiedene Fertigungsverfahren wie Sägen, elektroerosive Trennung, Wasserstrahlschneiden, Nass- oder Trockentrennschleifen eingesetzt werden.




**Bild 3-1** Schraube mit eingezeichneter Lage der vorgesehenen Schnittfläche (Foto: A. Eysert, Hochschule Mittweida)



**Bild 3-2** Probenherstellung – Nasstrennschleifen des Werkstücks (Foto: A. Eysert, Hochschule Mittweida)

Beim Trennen lässt sich eine plastische Verformung und u. U. eine thermische Belastung im Bereich der Trennfläche nicht vollständig vermeiden (Bild 3-3). Durch nachfolgende Präparationsschritte (Schleifen, Polieren) muss die beeinflusste Schicht abgetragen werden. Eine ausreichende Kühlung und geringe Schnittkräfte führen zumindest zu einer Minimierung der Werkstoffbeeinflussung. Insbesondere bei metallischen Werkstoffen wird die geringste

Werkstoffbeeinflussung durch Nasstrennschleifen erreicht (Bild 3-2). So ist für das Trennschleifen eine Bearbeitungsschicht mit einer Dicke von 20...150 µm typisch. In Abhängigkeit von der Härte und der Zähigkeit des Materials können Trennscheiben gewählt werden, die sich in der Art der Hartstoffe, in der Korngröße der Hartstoffe, im Binder und im Binderanteil unterscheiden (Tabelle 3-1). Neben der Zusammensetzung der Trennscheiben wird die Qualität des Schnitts und die Standzeit der Trennscheibe durch die Schnittgeschwindigkeit/Drehzahl, den Vorschub, die Schnittkraft, das Kühlmittel und die Kühlmittelmenge beeinflusst.



**Bild 3-3** Durch das Trennen wird der Werkstoff im Bereich der Schnittkante plastisch verformt. Schliff quer zur Schnittrichtung, Tiefziehblech DC03, geätzt mit 3 %iger alkoholischer HNO<sub>3</sub> (Foto: A. Eysert, Hochschule Mittweida)

Tabelle 3-1 Übliche Schneidstoff-Binder-Kombinationen für Trennscheiben zum Nasstrennschleifen

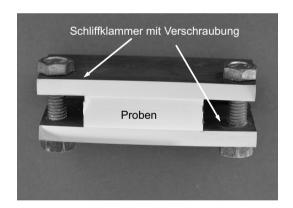
| Zu bearbeitender Werkstoff                                                                                                              | Härte des zu tren-<br>nenden Werkstoffs | Schneidstoff                            | Bindung                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|
| weiche Nichteisenwerkstoffe, z.B.<br>Aluminium- und Kupferlegierungen                                                                   | < 300 HV                                | SiC                                     | Kunstharz oder<br>Gummi |
| zähe, mittelharte Nichteisenwerkstoffe,<br>z.B. Titanlegierungen                                                                        | 100350 HV                               | SiC                                     | Kunstharz oder<br>Gummi |
| hochfeste, zähe Nichteisenwerkstoffe, z.B.<br>Nickelbasis- und Cobaltbasislegierungen                                                   | 200500 HV                               | Al <sub>2</sub> O <sub>3</sub> oder cBN | Kunstharz               |
| weiche Eisenwerkstoffe, z.B. DC01 bis DC07, Armco-Eisen                                                                                 | 50350 HV                                | $Al_2O_3$                               | Kunstharz oder<br>Gummi |
| mittelharte Eisenwerkstoffe, z.B. normal-<br>geglühte oder weichgeglühte untereutek-<br>toide Stähle, allgemeine Baustähle, GJS,<br>GJL | 200550 HV                               | Al <sub>2</sub> O <sub>3</sub>          | Kunstharz               |
| harte Eisenwerkstoffe, z.B. vergütete<br>Stähle, gehärtete Warmarbeitsstähle, ADI                                                       | 300750 HV                               | $Al_2O_3$                               | Kunstharz               |
| sehr harte Eisenwerkstoffe, z.B. gehärtete<br>Kalt- und Schnellarbeitsstähle, Hartguss                                                  | 500900 HV                               | Al <sub>2</sub> O <sub>3</sub> oder cBN | Kunstharz               |
| Hartmetalle und Keramiken                                                                                                               | 8002000 HV                              | Diamant                                 | Kunstharz               |
| Verbundwerkstoffe, z.B. kohlenstoff- oder glasfaserverstärkte Verbundwerkstoffe                                                         |                                         | Diamant                                 | Metall                  |

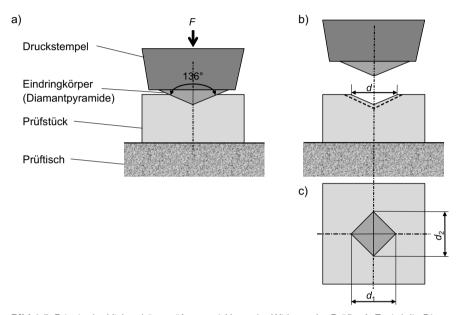
Um einen geraden und ebenen Schnitt zu bekommen, muss die Probe fest gespannt sein. Ist die Probe zu locker, kann sich u. U. die Trennscheibe im Werkstück verkeilen und zerstört werden. Allerdings kann bei sehr spröden Werkstoffen eine zu große Spannkraft die Probe zerbrechen. Unmittelbar nach dem Trennen ist die Probe dauerhaft zu bezeichnen bzw. mit einer Probennummer zu versehen. Diese Bezeichnung muss auf der Probe jederzeit lesbar und eindeutig dem Werkstück zuzuordnen sein. Die Probenbezeichnung wird wie die Schlifflage im Protokoll dokumentiert.

#### 3.4.1.2 Einfassen

Um die Proben beim Schleifen und Polieren besser handhaben zu können und dabei Kantenabrundungen oder ein Ausbrechen der Kanten oder von Randschichten zu vermeiden, werden die Proben eingefasst. Einbettformen geben den Proben nach dem Einbetten eine definierte Außengeometrie, sodass eine nachfolgende automatische Probenpräparation möglich wird. Insbesondere bei sehr kleinen oder scharfkantigen Proben schützt die Einbettung vor Verletzungen bei der Präparation.

Im einfachsten Fall werden die Proben in einer Schliffklammer eingefasst (Bild 3-4). Dabei sollte der Werkstoff der Schliffklammer dem zu präparierenden Material ähnlich sein, sonst werden beim Schleifen die Probe und die Schliffklammer unterschiedlich schnell abgetragen. Die Gefahr der Kantenabrundung würde steigen. Schliffklammern werden häufig für die Präparation von Blechen verwendet.





Bild 3-4 Sehr dünne Proben, wie z. B. Querschliffe von Tiefziehblechen, werden häufig in Schliffklammern präpariert. Das erlaubt eine sichere Handhabung und vermeidet eine Kantenabrundung. Bei Blechen lassen sich, wie hier zu sehen ist, auch mehrere Proben gleichzeitig präparieren. (Foto: A. Eysert, Hochschule Mittweida)

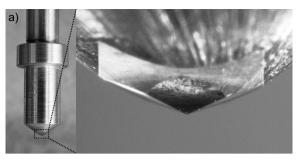
Oft werden die Proben in einem Polymer auf Epoxidharz-, Polyesterharz- oder auf Acrylbasis eingebettet. Je nach verwendetem Harz unterscheiden sich:

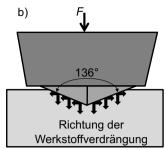
- die Einbetttemperatur Kalteinbetten bei Raumtemperatur oder Warmeinbetten je nach Aushärtetemperatur des Polymers zwischen 80°C und 170°C,
- die Aushärtezeit von wenigen Minuten bis zu mehreren Stunden,
- die Viskosität des Harzes beim Vergießen,
- die Härte des Polymers,
- die Haftung des Einbettmittels an der Probe,
- die Transparenz des Polymers,
- die Schrumpfung beim Aushärten (große Schrumpfung verschlechtert die Haftung von Harz und Probenmaterial, kann zu unerwünschter Kantenabrundung führen),
- die elektrische Leitfähigkeit (erforderlich für rasterelektronische Untersuchungen).

### 4.4.3 Härteprüfung nach Vickers HV

Das Härteprüfverfahren nach Vickers ist aus der Brinellprüfung entstanden und läuft nach einem ähnlichen Muster ab. Eine Diamantpyramide dient als Eindringkörper und wird mit einer definierten Kraft F in den Werkstoff gedrückt. Nach der Entlastung werden die Diagonalen  $d_1$  und  $d_2$  des verbleibenden Eindrucks vermessen (Bild 4-5). Die Vickershärte entspricht dem Quotienten aus Prüfkraft und der Oberfläche des verbleibenden Härteeindrucks. Die Härteprüfung nach Vickers ist in der DIN EN ISO 6507 standardisiert.




**Bild 4-5** Prinzip der Vickershärteprüfung – a) Unter der Wirkung der Prüfkraft F wird die Diamantpyramide in das Prüfstück gedrückt. b) Nach 10...15 s Haltezeit wird der Eindringkörper entlastet. Die Entlastung führt zu einer geringen elastischen Rückfederung im Prüfstück. c) Die Diagonalen des verbleibenden Härteeindrucks  $d_1$  und  $d_2$  werden gemessen und der Mittelwert d wird aus beiden berechnet.


#### Eindringkörper

Als Eindringkörper bei der Vickershärteprüfung wird eine Diamantpyramide mit quadratischer Grundfläche und einem Öffnungswinkel von 136° verwendet (Bild 4-6). Von der unmittelbaren Spitze der Pyramide abgesehen, bleibt der Spannungszustand an den Seitenflächen der Pyramide unabhängig von der Eindringtiefe konstant (Bild 4-6b). Zumindest im konventionellen Härtebereich (HV 5 bis HV 100) führt diese Geometrie des Eindringkörpers zu lastunabhängigen Härtewerten. Diamant als härtester Stoff in Natur und Technik erlaubt es, an praktisch allen Materialien die Härte zu prüfen.

#### Prüfkraft

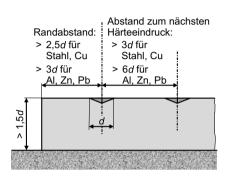
Für die Vickershärteprüfung stehen der konventionelle Härtebereich, der Kleinkraftbereich und der Mikrohärtebereich mit jeweils mehreren Prüfkräften zur Verfügung (Tabelle 4-2). Diese Einteilung erlaubt es, die Prüfkraft für eine konkrete Prüfaufgabe auszuwählen. Für die



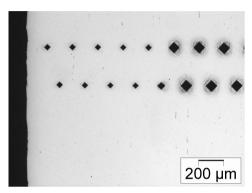


**Bild 4-6** a) Bei der Vickershärteprüfung wird eine Diamantpyramide als Eindringkörper verwendet. b) Der konstante Öffnungswinkel von 136° sorgt für einen gleichbleibenden Spannungszustand im Werkstoff unter der Diamantpyramide. Das hat den Vorteil, dass bei veränderten Prüfkräften das Verhältnis von Prüfkraft zur Eindruckoberfläche (= Härte) gleich bleibt.

Bestimmung eines repräsentativen Härtewertes wird mit einer Prüfkraft aus dem konventionellen Härtebereich gearbeitet, üblicherweise mit 294,2 N (HV 30). Ist die Härte an sehr dünnen Blechen oder sehr weichen Werkstoffen zu ermitteln, werden kleinere Prüfkräfte verwendet. Bei sehr harten Werkstoffen wird mit HV 50 oder HV 100 geprüft. Eine Prüfkraft aus dem Kleinkraftbereich wird gewählt, wenn die Härte einer dünnen Schicht zu bestimmen ist oder wenn ein Härtegradient zu messen ist. So werden beispielsweise für die Bestimmung der Einsatzhärtungs-Härtetiefe CHD nach DIN 50 190-1 in definierten Abständen Härteeindücke mit HV 1 an einem Querschliff gesetzt und eine Härteverlaufskurve ermittelt. Ähnlich wird auch bei der Bestimmung der Nitrier-Härtetiefe NHD und der Einhärtungs-Härtetiefe SHD vorgegangen. Prüfkräfte aus dem Mikrohärtebereich werden dann gewählt, wenn die Härte in einzelnen Gefügebereichen gemessen werden soll. Da die Härteeindrücke nur noch sehr klein sind, werden diese mit einem Mikroskop oder Elektronenmikroskop ausgemessen.


Tabelle 4-2 Härtebereiche und Prüfkräfte bei der Vickershärteprüfung nach DIN EN ISO 6507

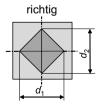
| Konventionelle            | r Härtebereich             | Kleinkraftbereich                                     |                            | Mikrohärtebereich                         |                            |
|---------------------------|----------------------------|-------------------------------------------------------|----------------------------|-------------------------------------------|----------------------------|
| Härtesymbol               | Prüfkraft <i>F</i><br>in N | Härtesymbol                                           | Prüfkraft <i>F</i><br>in N | Härtesymbol                               | Prüfkraft <i>F</i><br>in N |
| HV 5                      | 49,03                      | HV 0,2                                                | 1,961                      | HV 0,01                                   | 0,098 07                   |
| HV 10                     | 98,02                      | HV 0,3                                                | 2,942                      | HV 0,015                                  | 0,147                      |
| HV 20                     | 196,1                      | HV 0,5                                                | 4,903                      | HV 0,02                                   | 0,1961                     |
| HV 30                     | 294,2                      | HV 1                                                  | 9,807                      | HV 0,025                                  | 0,2452                     |
| HV 50                     | 490,3                      | HV 2                                                  | 19,61                      | HV 0,05                                   | 0,049 03                   |
| HV 100                    | 980,7                      | HV 3                                                  | 29,42                      | HV 0,1                                    | 0,9807                     |
| Anwendung allgemeine Härt | eprüfung                   | Härteverläufe, Prüfung dünner<br>Folien und Schichten |                            | Bestimmung der zelnen Gefügen standteilen |                            |

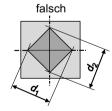

#### Härteeindruck

Um die Beeinflussung des Messwertes von der Geometrie oder von der Verformungsverfestigung eines vorangegangenen Härteeindrucks auszuschließen, muss wie bei Brinell darauf

geachtet werden, dass Mindestabstände zum Rand der Probe und zum nächsten Härteeindruck eingehalten werden (Bild 4-7). Auch eine Mindestdicke ist zu berücksichtigen bzw. es muss die Prüfkraft so abgesenkt werden, dass ein Durchdrücken des Eindringkörpers oder eine Markierung auf der Rückseite der Probe ausgeschlossen ist. Insbesondere bei der Bestimmung von Härteverläufen ist oft ein möglichst kleiner Abstand zwischen den Einzelmessungen gefragt. Um die o.g. Mindestabstände einzuhalten, werden deshalb die Härteeindrücke versetzt in zwei oder drei Spuren gesetzt (Bild 4-8).




**Bild 4-7** Mindestabstände bei der Vickershärteprüfung




**Bild 4-8** Versetzte Härteeindrücke zur Bestimmung eines Härteverlaufs an einer einsatzgehärteten Randschicht

#### Durchführung und Auswertung

Nachdem die Probe gereinigt und evtl. angeschliffen wurde, wird sie auf den Probentisch gelegt und verspannt. Nach der Einstellung der Prüfkraft am Härteprüfgerät, wird der Eindringkörper eingeschwenkt, auf die Probe aufgesetzt und die Prüfkraft wird allmählich innerhalb von  $2\dots 8$  s stoßfrei aufgebracht. Die Prüfkraft wird  $10\dots 15$  s konstant gehalten. Anschließend wird der Eindringkörper entlastet und ausgeschwenkt. Am verbleibenden Härteeindruck werden die Längen der Diagonalen  $d_1$  und  $d_2$  gemessen. Dabei ist darauf zu achten, dass exakt parallel zur gedachten Geraden zwischen den Eckpunkten des Härteeindrucks gemessen wird (Bild 4-9).





**Bild 4-9** Die Diagonalen des Härteeindrucks sind parallel auszumessen.

Aus  $d_1$  und  $d_2$  wird der arithmetische Mittelwert berechnet:

$$d = \frac{d_1 + d_2}{2} \tag{4-5}$$

 $d_1; d_2$  gemessene Diagonalenlänge des Härteeinducks in mm d mittlere Diagonalenlänge des Härteeindrucks in mm

Der Vickershärtewert berechnet sich aus dem Verhältnis von Prüfkraft zur Oberfläche des Härteeindrucks, also der Außenfläche einer Pyramidenspitze:

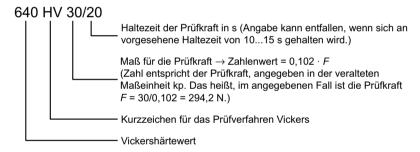
$$HV = \frac{Pr \ddot{u}fkraft}{Oberfl\ddot{a}che\ des\ Eindrucks}$$
(4-6)

$$HV = 0.102 \cdot \frac{2 \cdot F \cdot \sin \frac{136^{\circ}}{2}}{d^2}$$

$$(4-7)$$

Vereinfacht gilt:

$$HV \approx 0.1891 \cdot \frac{F}{d^2} \tag{4-8}$$


F Prüfkraft in N

d mittlere Diagonalenlänge des Härteeindrucks in mm

Die Vickershärte kann außerdem mithilfe der Auswertetabelle in der DIN EN ISO 6507-4 bestimmt werden.

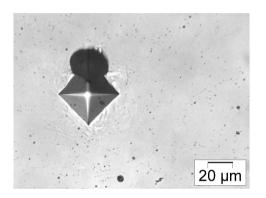
Angabe der Vickershärte

Die Vickershärte wird wie im folgenden Beispiel normgerecht angegeben:



Vor- und Nachteile

Der entscheidende Vorteil der Vickershärteprüfung ist die Lastunabhängigkeit der Härtewerte im konventionellen Härtebereich. Unabhängig davon, ob die Prüfung mit einer Prüfkraft von 49,03 N oder mit 980,7 N durchgeführt wurde, lassen sich die Härtewerte miteinander vergleichen. Außerdem erlaubt die extrem hohe Härte des Eindringkörpers, praktisch alle Werkstoffe mit dem Vickersverfahren zu prüfen.


Die vielen zur Verfügung stehenden Prüfkräfte gestatten eine zielgerichtete Auswahl je nach anstehender Prüfaufgabe. Soll die Härte an sehr dünnen Folien oder an Schichten geprüft werden, kann die Prüfkraft entsprechend gesenkt werden, sodass ein Durchdrücken nicht stattfinden kann.

Nachteilig bei einer manuellen Vermessung der Diagonalenlängen des Härteeindrucks ist der subjektive Einfluss auf das Messergebnis. Wird ein und derselbe Härteeindruck von zwei Personen vermessen, werden sich die Messergebnisse geringfügig unterscheiden. In den letzten Jahren hat sich allerding immer stärker die automatisierte Vermessung der Eindrücke

mit elektrooptischen Bildverarbeitungssystemen durchgesetzt, sodass dieses Problem ausgeschlossen werden kann.

Weiterhin können Messprobleme bei härtebeeinflussenden Zweitphasen entstehen. Trifft der Eindringkörper beispielsweise seitlich auf einen sehr harten Gefügebestandteil, z. B. ein großes Carbidteilchen bei Stählen, dann kann sogar eine ganze Ecke des Härteeindrucks fehlen (Bild 4-10). Außerdem ist es insbesondere bei extrem spröden Werkstoffen möglich, dass sich an den Kanten des Eindrucks Risse bilden. In diesem Fall muss davon ausgegangen werden, dass ein mit solchen Rissen behaftetes Bauteil nicht mehr verwendet werden kann.

Gegenüber der Brinellkugel ist die Diamantpyramide deutlich kostenintensiver. Außerdem ist der Diamant empfindlicher und kann bei einer schlagartigen Belastung abbrechen.



**Bild 4-10** Durch nichtmetallische Einschlüsse, große Karbide aber auch durch graphitische Einschlüsse werden die Härteeindrücke deformiert oder es fehlen, wie hier, ganze Bereiche des Härteeindrucks. Solche Härteeindrücke sind zu verwerfen.

#### **Anwendung**

Aufgrund der Lastunabhängigkeit der Härtewerte, der hohen Genauigkeit, der vielen zur Verfügung stehenden Prüfkräfte und der hohen Härte des Eindringkörpers ist die Vickershärteprüfung das in der Wissenschaft am häufigsten eingesetzte Härteprüfverfahren. Es kann für nahezu alle metallischen Werkstoffe verwendet werden. Die Vickersprüfung erlaubt sowohl sehr große Bauteile aber auch sehr dünne Schichten oder Folien zu untersuchen. Die Mikrohärteprüfer, die in der Regel Zusatzgeräte für Mikroskope oder Elektronenmikroskope sind, erlauben es sogar, die Härte in einzelnen Körnern, Gefügen oder Gefügebestandteilen zu ermitteln. Für die Bestimmung des Härtegradienten und dessen charakterisierende Eigenschaften (Einhärtungs-Härtetiefe SHD, Einsatzhärtungs-Härtetiefe CHD, Nitrier-Härtetiefe NHD) an randschichtgehärteten, einsatzgehärteten oder nitrierten Bauteilen ist die Vickersprüfung im Kleinkraftbereich zwingend vorgeschrieben.

## 4.4.4 Härteprüfung nach Rockwell Skala C HRC

Die Härteprüfung nach Rockwell unterscheidet sich in der Art des Eindringkörpers, der Kraftaufbringung und im Auswerteverfahren von der Vickers- und Brinellprüfung. Entsprechend der DIN EN ISO 6508 wird die Rockwellhärteprüfung in verschiedene Skalen unterteilt. Dahinter verbergen sich die Art des zu verwendenden Prüfkörpers (Hartmetall- oder Stahlkugel, Diamantkegel) und die Höhe der zu verwendenden Prüfkraft. Die größte praktische Bedeutung hat das Rockwellverfahren gemessen nach der Skala C HRC. Beim HRC-

# Index

| Abbildungsmaßstab des Objektivs 85<br>Abkühlen 153<br>Abkühlgeschwindigkeit, obere kritische 147<br>-, untere kritische 147, 157 | Breitung, laterale 194 Brinellhärteprüfung 113 Bruchdehnung 60 Brucheinschnürung 60 Bruchlastspielzahl 216 |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Abkühlmittel 161                                                                                                                 |                                                                                                            |
| α-Eisen 95                                                                                                                       | C                                                                                                          |
| α-Mischkristall 96                                                                                                               | chemische Kontrastierung 91                                                                                |
| Anfangslänge 48 f.                                                                                                               | Cotrell-Wolke 58                                                                                           |
| Anfangsmesslänge 61                                                                                                              | Curietemperatur 96                                                                                         |
| Anfangsquerschnittsfläche 49, 61                                                                                                 |                                                                                                            |
| Anlassen 167                                                                                                                     | D                                                                                                          |
| Anlassstufe 168                                                                                                                  | Dauerbruch 211                                                                                             |
| Anlassversprödung 170                                                                                                            | Dauerfestigkeit 215, 217, 229                                                                              |
| Anrissbildung 192                                                                                                                | Dauerfestigkeitsschaubild nach Smith 229                                                                   |
| Anwärmen 153                                                                                                                     | Dehngeschwindigkeit 54                                                                                     |
| $\arcsin \sqrt{P}$ -Transformation 221, 225                                                                                      | Dehnung 49, 55, 57                                                                                         |
| Ätzen 91                                                                                                                         | δ-Eisen 95                                                                                                 |
| Aufhärtbarkeit 164                                                                                                               | δ-Ferrit 100                                                                                               |
| Auflichtmikroskop 79                                                                                                             | δ-Mischkristall 96                                                                                         |
| Auflösungsgrenzen der Lichtmikroskopie 86,                                                                                       | Differenzialinterferenzkontrast 93                                                                         |
| 90                                                                                                                               | Diffusion 17                                                                                               |
| Ausdehnungskoeffizient, thermischer 136                                                                                          | Dilatometer 136                                                                                            |
| Außendurchmesser 48                                                                                                              | Druckschwellbereich 215                                                                                    |
| Austauschmischkristall 18                                                                                                        | Dunkelfeldbeleuchtung 79                                                                                   |
| Austenit 100 f., 103                                                                                                             | Durchwärmen 153                                                                                            |
|                                                                                                                                  | dynamische Härteprüfung 112                                                                                |
| В                                                                                                                                | -                                                                                                          |
| Bainit, oberer 144                                                                                                               | E                                                                                                          |
| -, unterer 144                                                                                                                   | Einfassen 75                                                                                               |
| Bainitisieren 144                                                                                                                | Einhärtbarkeit 161, 164                                                                                    |
| Beanspruchungsgrad 114                                                                                                           | Einlagerungsmischkristall 19                                                                               |
| begrenzte Löslichkeit im festen Zustand 33,                                                                                      | einstufiger Schwingversuch 215                                                                             |
| 36                                                                                                                               | Eisen 95                                                                                                   |
| Beugung 87                                                                                                                       | Eisen-Kohlenstoff-Diagramm 94                                                                              |
| Beugung am Doppelspalt 89                                                                                                        | elastische Verformung 56                                                                                   |
| Beugungsbild 87, 89                                                                                                              | Elastizitätsmodul 57                                                                                       |
| Bezugssehweite 84                                                                                                                | elektrochemische Kontrastierung 91                                                                         |
| Biegung 185                                                                                                                      | Entfestigung, zyklische 210                                                                                |
| Blausprödigkeit 170                                                                                                              | Enthalpie 13                                                                                               |
| Brechungszahl 89                                                                                                                 | Entmischung 30                                                                                             |
|                                                                                                                                  |                                                                                                            |

| Entropie 13                                                            | Höchstkraft 59                                   |
|------------------------------------------------------------------------|--------------------------------------------------|
| Ermüdung 207 f.                                                        | Hookesche Gerade 56                              |
| Ermüdungsbruch 213                                                     | Hookesches Gesetz 56                             |
| Erstarrungsintervall 24                                                |                                                  |
| eutektische Legierung 30                                               |                                                  |
| eutektische Temperatur 30, 34                                          | inkongruent schmelzend 38                        |
| eutektisches Gefüge 32                                                 | Innendurchmesser 48                              |
| eutektisches System 33                                                 | instabiler Rissfortschritt 188                   |
| eutektoid 39                                                           | instationäre Schwingung 214                      |
| eutektoide Entmischung 104                                             | Interferenz 87                                   |
| Extensometer 55                                                        | interkristalliner Sprödbruch 192                 |
| Extensometermesslänge 55                                               | intermetallische Phase 19, 38                    |
| Extrusion 211                                                          | Intrusion 211                                    |
|                                                                        | isothermes ZTU-Diagramm 151                      |
| F                                                                      |                                                  |
| Ferrit 100 f., 105, 139                                                | K                                                |
| Flachzugprobe 52                                                       | Voimbildung 14                                   |
| förderliche Vergrößerung 91                                            | Keimbildung 14 Keimradius, kritischer 15 f.      |
| freie Enthalpie 13                                                     | Keimwachstum 14                                  |
| _                                                                      |                                                  |
| G                                                                      | Kerbschlagbiegeversuch 178<br>Köhlern 81         |
|                                                                        |                                                  |
| γ-Eisen 95<br>γ-Mischkristall 96                                       | kongruent schmelzend 38                          |
| Gangunterschied 87                                                     | Konode 26, 40                                    |
| 8                                                                      | Kontrastierung 91 –, chemische 91                |
| Gefüge 70                                                              | –, clemische 91<br>–, elektrochemische 91        |
| Gesamtvergrößerung des Mikroskops 84                                   |                                                  |
| Gesetz der abgewandten Hebelarme 40<br>Gewaltbruch 190, 213            | –, optische 92<br>Kornflächenätzung 91           |
|                                                                        |                                                  |
| Gibbssche Phasenregel 21                                               | Korngrenzenätzung 91<br>Kraft 47                 |
| Gleichgewichtslinie 24                                                 |                                                  |
| Gleichmaßdehnung 58 f.                                                 | Kraftmessung 54                                  |
| gleichmäßig plastische Verformung 58<br>Grenzschwingspielzahl 216, 218 | Kristallgemisch 30, 35<br>Kristallisation 14, 18 |
| Gienzschwingspierzani 210, 210                                         | Kristallkeim 14                                  |
| н                                                                      | Kristallseigerung 27                             |
|                                                                        | kritischer Keimradius 15 f.                      |
| Halten 153                                                             | Kurzzeitfestigkeit 217                           |
| Härtbarkeit 164                                                        | Ruizzeitiestigkeit 217                           |
| Härte 112                                                              | L                                                |
| Härten 144, 157                                                        |                                                  |
| Härteprüfung 111                                                       | laterale Breitung 194                            |
| –, dynamische 112                                                      | Lattenmartensit 143                              |
| – nach Brinell 113                                                     | Ledeburit I 100                                  |
| – nach Rockwell 122                                                    | – II 100                                         |
| –, statische 112                                                       | Legierung 11                                     |
| Härtevergleichsplatte 127                                              | Liquiduslinie 25                                 |
| Härteverlaufskurve 166                                                 | logarithmische Formänderung 49                   |
| Hebelgesetz 40                                                         | Löslichkeit 33                                   |
| Hellfeldbeleuchtung 79, 91                                             | Löslichkeitsgrenze 34                            |
| Hochlage 198                                                           | Lüdersdehnung 57                                 |

| M                                         | Probendurchmesser 48                                                 |
|-------------------------------------------|----------------------------------------------------------------------|
| Martensit 140                             | Proportionalitätsfaktor 51                                           |
| Martensit 140 Martensitbildung 141        | Proportionalprobe 51                                                 |
| Martensitstarttemperatur 147              |                                                                      |
| Massivmartensit 143                       | Q                                                                    |
| Materialographie 70                       | Querschnittsfläche nach dem Bruch 61                                 |
| Messlänge nach dem Bruch 61               | _                                                                    |
| Metallographie 70                         | R                                                                    |
| metallographische Probenpräparation 72    | Randschichthärten 158, 163                                           |
| Mikroskop, Gesamtvergrößerung 84          | Rastlinie 213                                                        |
| -, Strahlengang 79                        | Reineisen 101                                                        |
| Mischbruch 195                            | Restaustenit 168                                                     |
| Mischungslücke 35                         | Restbruch 213                                                        |
| Mittelspannung 215                        | Rissbildung 211                                                      |
| Witterspannung 215                        | Rissfortschritt, instabiler 188                                      |
| N                                         | -, stabiler 189                                                      |
|                                           | Risswachstum 211                                                     |
| Normalglühen 154                          | Rockwellhärteprüfung 122                                             |
| Normalisieren 154                         | Rundzugprobe 51                                                      |
| Normalspannung 47                         | Rundzugprobe 31                                                      |
| numerische Apertur 90                     | s                                                                    |
| 0                                         |                                                                      |
| 0                                         | Schlagenergie, verbrauchte 183 Schlagenergie-Temperatur-Diagramm 198 |
| obere kritische Abkühlgeschwindigkeit 147 | Schleifen 76                                                         |
| obere Streckgrenze 57                     | Schwingfestigkeit 207                                                |
| oberer Bainit 144                         | 0 0                                                                  |
| Oberspannung 215                          | Schwingung, instationäre 214 –, stationäre 214                       |
| Objektiv, Abbildungsmaßstab 85            |                                                                      |
| Objektivbezeichnung 90                    | Schwingungen 214 Schwingungsstreifen 213                             |
| Oktaederlücke 141                         |                                                                      |
| optische Kontrastierung 92                | Schwingversuch, einstufiger 215<br>Segregat 34                       |
| _                                         | sekundäre Ausscheidung 34                                            |
| P                                         | Sekundärhärtemaximum 169                                             |
| Pendelschlagwerk 184                      | Sekundariartemaximum 109<br>Sekundärzementit 101, 106                |
| Peritektikum 37                           | Smith-Diagramm 230                                                   |
| peritektische Reaktion 37                 | Soliduslinie 26                                                      |
| peritektische Temperatur 37               | Spaltbruch 190 f.                                                    |
| peritektisches System 36                  | Spannung 47                                                          |
| peritektoid 39                            | -, technische 49                                                     |
| Perlit 100, 104 ff., 140                  | -, wahre 62                                                          |
| Phase 11                                  | Spannung-Dehnung-Diagramm 56                                         |
| Phasenumwandlung 13                       | Spannungsamplitude 215                                               |
| Plattenmartensit 143                      | Spannungsspitze 181                                                  |
| Polarisationskontrast 92                  | Spannungsverhältnis 215                                              |
| Polieren 77                               | Sprödbruch 188, 190                                                  |
| polymorph 39                              | –, interkristalliner 192                                             |
| Primärzementit 100                        | –, interkristalliner 192<br>–, transkristalliner 192                 |
| Probe 72                                  | Sprödigkeit 180                                                      |
| Probenbreite 48                           | stabiler Rissfortschritt 189                                         |
| Probendicke 48                            | Stabiler Rissionschiftt 169<br>Stahl 134                             |
| I TODGITATORE 40                          | Stalli 194                                                           |

| stationäre Schwingung 214                   | Verformungsverfestigung 58                |
|---------------------------------------------|-------------------------------------------|
| statisches Härteprüfverfahren 112           | Verformungswaben 193                      |
| Stirnabschreckversuch 166                   | Vergrößerung 84, 86                       |
| Stoffsystem 21                              | –, förderliche 91                         |
| Strahlengang im Mikroskop 79                | vergütet 158                              |
| Streckgrenze, obere 57                      | Verlängerung 48 f.                        |
| –, untere 58                                | Verlängerung der Extensometermesslänge 55 |
| Stufenversetzung 190                        | Versetzungsbewegung 188                   |
| Substitutionsmischkristall 18               | Versuchslänge 52                          |
| -                                           | Vickershärteprüfung 118                   |
| Т                                           | vollständige Löslichkeit 24               |
| technische Spannung 49, 57                  | _                                         |
| Temperaturkonzept 198                       | W                                         |
| Tertiärzementit 101, 103                    | wahre Spannung 62                         |
| thermische Analyse 12, 21, 136              | Wahrscheinlichkeitsnetz 220               |
| thermischer Ausdehnungskoeffizient 136      | Wärmebehandlung 153                       |
| Tieflage 198                                | Wärmebehandlung von Stählen 134           |
| transkristalliner Sprödbruch 192            | Wechselbereich 215                        |
| Trennen 73                                  | Werkstoffkennwert 46                      |
| Trennfestigkeit 188                         | Wöhlerkurve 217                           |
| Treppenstufenverfahren 223                  | Wöhlerversuch 215                         |
|                                             | _                                         |
| U                                           | Z                                         |
| Übergangstemperatur 198                     | Zähigkeit 178, 180, 183, 196 f.           |
| Überlebenswahrscheinlichkeit 218            | Zeitfestigkeit 215, 217, 219              |
| Überstruktur 19                             | Zeit-Temperatur-                          |
| Universalprüfmaschine 54                    | Umwandlungsdiagramm 145                   |
| Unlöslichkeit im festen Zustand 29          | Zementit 97                               |
| untere kritische Abkühlgeschwindigkeit 147, | Zonenmischkristall 27                     |
| 157                                         | ZTU-Diagramm 145, 149                     |
| untere Streckgrenze 58                      | -, isothermes 151                         |
| unterer Bainit 144                          | –, kontinuierliches 145                   |
| Unterspannung 215                           | Zugfestigkeit 59                          |
|                                             | Zugschwellbereich 215                     |
| V                                           | Zugversuch 46                             |
| verbrauchte Schlagenergie 183               | Zustandsdiagramm 21                       |
| Verfestigung, zyklische 210                 | Zustandssystem 11                         |
| Verformung 47                               | Zweistoffsystem 21                        |
| Verformungsbruch 193                        | zyklische Entfestigung 210                |
| Verformungsbruchanteil 203                  | zyklische Verfestigung 210                |
| <u> </u>                                    |                                           |
|                                             |                                           |