Contents

1	Pro	blems and Examples 3
	1.1	Vibrations of Perfectly Flexible Rods
	1.2	Torsional vibrations of rods
	1.3	Extensional vibrations of rods
	1.4	Bending vibrations of rectilinear rods
	1.5	Vibrations of rectilinear and curvilinear rods
2	Ans	swers and solutions
	2.1	Vibrations of Perfectly Flexible Rods
	2.2	Torsional vibrations of rods
	2.3	Extensional vibrations of rods
	2.4	Bending vibrations of rectilinear rods
	2.5	Vibrations of rectilinear and curvilinear rods
\mathbf{Re}	feren	ces
\mathbf{A}	Stat	tics of rods: basic equations
	A.1	Derivation of nonlinear equations of rod equilibrium 182
	A.2	Transformations of base vectors
	A.3	Derivatives of base vectors with respect to arc coordinate s 189
	A.4	Equations relating \mathfrak{E}_j to angles $\vartheta_k \dots 192$
	A.5	Vector equation of displacements of points of the rod axial line 194
	A.6	Equation connecting the vectors $\overline{\mathbf{M}}$ and $\overline{\mathbf{z}}$
	A.7	System of nonlinear equations of rod equilibrium
	A.8	Reduction of equations to dimensionless notation 197
	A.9	Boundary conditions
	A.10	External load and its behaviour under rod loading process 199 $$
	A.11	Vector nonlinear equations of rod equilibrium in the bound
		coordinate system
	A.12	? Equations of rod equilibrium in projections onto bound axes $\dots 202$
		Special cases of equilibrium equations

2	Contents
В	Basic equations of rod kinematics
C	Basic equations of rod dynamics
D E	Exact numerical method of determining the frequencies and modes of rod vibrations
	small vibrations of rods

Approximate solution of equation of rod forced vibrations .237