Contents

Near-Field Imaging of Magnetic Domains

Ge	reon Meyer, Andreas Bauer, Günter Kaindl	1
1	Introduction	1
2	Magneto-Optical SNOM	2
	2.1 Faraday Effect and Kerr Effect	2
	2.2 Sagnac Interferometer	4
	2.3 Kerr Microscopy	7
	2.4 Domain Contrast in SNOM	8
3	Experimental Details	11
	3.1 UHV System	11
	3.2 UHV-SNOM Setup	14
	3.3 Sagnac-SNOM Setup	16
	3.4 Performance Tests	18
4	Magnetic Domains in Ultrathin Films	23
	4.1 Spin-Reorientation Transition	24
	4.2 Stripe-Domain Patterns	25
	4.3 Domain Contrast	27
	4.4 Study of Magnetization Reversal	30
	4.5 Transformation of Stripe Domains	33
5	Summary and Future Prospects	36
Ref	ferences	38
Im Ga Ch	provement of Interface Quality in Cleaved-Edge-Overgrowth As Quantum Wires Based on Micro-optical practerization	
Ma	sahiro Voshita, Hidefumi Akiyama	13
ma		10
1	Introduction	43
2	T-Shaped Quantum Wires Grown	
	by Cleaved-Edge Overgrowth Method	44
	2.1 Cleaved-Edge Overgrowth Method with MBE	44
	2.2 Micro-PL Imaging and Spectroscopy Setup	

Х	Contents

3	Inte	rface Roughness and Modulated Electronic States	
	in (1	110) GaAs QWs	48
	3.1	Preparation of (110) GaAs QWs	48
	3.2	Macro-PL of the (110) GaAs QWs	49
	3.3	Micro-PL Spectroscopy of the (110) GaAs QWs	50
	3.4	Interface Roughness in the (110) GaAs QWs	
		and T Wires Grown by the CEO Method	54
4	Form	nation of an Atomically Flat Surface on the (110) GaAs Grown	
	by t	he CEO Method	54
	4.1	Atomic Arrangements of the (001)	
		and (110) GaAs Surfaces	55
	4.2	Growth-Interrupt in situ Annealing Technique	56
	4.3	Formation of Atomically Flat CEO Surfaces	
		by Growth-Interrupt Annealing	56
	4.4	Surface Morphology of the Annealed Surface	
		with Fractional Monolayer Coverage	59
	4.5	Step-Edge Kinetics on the (110) GaAs Surface	
		during Annealing	61
	4.6	First-Principles Calculations	
		of Adatom Migration Barrier Energies on (110) GaAs	64
	4.7	Toward Formation	
		of a Wider Atomically Flat (110) GaAs Surface	67
5	Fab	rication of a High-Quality (110) GaAs QW	
	with	Atomically Smooth Interfaces	67
	5.1	Preparation of a (110) GaAs QW	
		with Atomically Smooth Interfaces	69
	5.2	Micro-PL of the (110) GaAs QW	69
6	Fab	rication of a High-Quality Single-Quantum-Wire	
	Lase	er Structure and its Lasing Properties	73
	6.1	Preparation of a Single-T-Wire Laser Structure	73
	6.2	Spatial Uniformity of the Electronic States in the T Wire	75
	6.3	Lasing from a Single-Quantum-Wire Laser	76
7	Con	cluding Remarks and Future Perspective	77
Ref	ferenc	Ces	79
Re	com	bination Dynamics	
in	In _r C	a_{1-r} N-Based Nanostructures	
v .	л 1.•т		

Yoi	chi K	Lawakami, Akio Kaneta, Kunimichi Omae, Yukio Narukawa,	
Tał	ashi	Mukai	83
1	Intro	oduction	83
2	Mate	erial Parameters of $In_x Ga_{1-x} N$	85
	2.1	Bandgap Energies in $In_x Ga_{1-x} N$ Alloys	85
	2.2	Alloy Broadening Factor in $In_x Ga_{1-x} N$ Alloys	86
	2.3	Piezoelectric Fields in Strained $In_x Ga_{1-x}N$ Layers	87

		Contents 2	XI
0	a		20
3	Gene	eral Transition Models	89 20
	ა.1 ვე	Photoinduced Change of Optical Density Induced	59
	3.2	by Two Major Effects	22
4	Pum	up and Probe Spectroscopy on In Gat N Thin Lavers	92
т	and	Ouantum Wells $($	95
5	SNO	M-Luminescence Mapping Results	00
0	5.1	Instrumentation	00
	5.2	SNOM-PL Mapping at Low Temperature	
		under Illumination–Collection Mode)4
	5.3	Multimode SNOM at RT 11	13
6	Cone	clusion	21
Ref	erenc	es	22
o	t	m Theory of Radiation in Ontired Near Field	
Qu	antu rođe	In Theory of Radiation in Optical Near Fleid	
Da	ing T	Detector Mode	
Tet	nig i suva	Inoue Hirokazu Hori	77
100	suya		
1	Intro	oduction	27
	1.1	Half-Space Problems	• •
	1.0	and Angular-Spectrum Representation 12	28
	1.2	Quantization of Evanescent Electromagnetic Fields	20
	1 9	and Radiative Decay in Optical Near Field	3U 21
	1.5	Outline 15	51 20
2	1.4	sical Theory of Radiation from an Oscillating Floctric Dipole	52
2	in Fi	r_{reg} Space 15	22
	21	Dipole Radiation in Free Space	33
	$\frac{2.1}{2.2}$	Total Radiation Intensity in Free Space	37
3	Clas	sical Theory of Radiation Based	
	on A	Angular-Spectrum Representation	39
	3.1	Angular-Spectrum Representation	40
	3.2	Angular-Spectrum Representation	
		of Scattered Electromagnetic Fields 14	42
	3.3	Angular Spectrum of Dipole Radiation Fields	
		in Optical Near-Field Regime 14	16
	3.4	Evaluation of Radiation Based	
		on Angular-Spectrum Representation 14	18
4	Radi	iative Decay of Oscillating Electric Dipole in Half-Space Based	
	on A	Angular-Spectrum Representation	50
	4.1	Half-Space Problems 15	50
	4.2	Angular-Spectrum Representation of Radiation Fields	- ^
	4.0	In Half-Space	54
	4.3	Electric Dipole Radiation into Medium 18	50

	4.4	Electric Dipole Radiation
		into the Vacuum-Side Half-Space
	4.5	Interaction between Electric Dipole and Dielectric Surface \dots 158
5	Qua	ntum Theory of Dipole Radiation Near a Dielectric Surface
	Base	ed on Detector Modes
	5.1	Normal Modes as the Basis of Field Quantization
		in Half-Space Problems; Triplet and Detector Modes 162
	5.2	Detector-Mode Functions
	5.3	Electric Field Operator in Half-Space Problems
	5.4	Spontaneous Emission into Right Half-Space 170
	5.5	Spontaneous Emission into Left Half-Space
	5.6	Radiative Decay Rate and Lifetime of Electric Dipole
		in Half-Space
	5.7	Dependence of Radiative Lifetime on Magnetic
		Quantum Number of Atom in Half-Space Problems 176
6	Qua	ntum Theory of Multipole Radiation
	in O	ptical Near-Field Regime
	6.1	Multipole Transition Matrix Elements
	6.2	Spontaneous Decay Rate of Multipoles in Half-Space 184
7	Tun	neling Picture of Optical Near-Field Interactions
	7.1	Energy Transport via Tunneling
		in Optical Near-Field Interactions
	7.2	Fundamental Process in Nano-Optics Device
App	pendi	ices
	А	Vector Spherical Wave
	В	Expansion of the Vector Plane Wave in Terms
		of the Vector Spherical Waves
	С	Multipole Expansion of Transition Current
Ref	erenc	ces
Ind	lex .	

XII Contents