Inhaltsverzeichnis

Teil I Statistik und Thermodynamik für Gleichgewichtssysteme 1 Statistische Gesamtheiten 3 1.1 Klassische Ensemblemittelung 4 1.2 Quantenstatistische Ensemblemittelung Kanonische Gesamtheit..... Verbindung mit der Thermodynamik, Entropie .. 37 5.1 Extremaleigenschaften der Entropie 42 5.3 Entropie und Information 48 5.4 Andere Darstellungen der mikrokanonischen und

	Inhaltsverzeichnis	XIII
12	Van-der-Waals-Gleichung	119
	Waals-Gases	
	12.4 Gas-Flüssigkeits-Phasenübergang	$124\\126$
13	Ginzburg-Landau-Potenzial	129
14	Störungstheorie 14.1 Wechselwirkungsdarstellung des Exponentialoperators	137
	14.2 Störungstheorie zweiter Ordnung 14.3 Beispiel: Äußeres Feld 14.4 Aufgaben	140
15	Thermodynamisches Variationsverfahren	145
	wechselwirkende Fermionen	
	l II Statistik und Kinetik Nichtgleichgewichtssysteme	
16	Master-Gleichung	
	einem Bad	161
	16.3.2Systeme in Kontakt mit einem Bad	162

 20 Boltzmann-Gleichung
 191

 20.1 Heuristische Ableitung
 191

 20.2 Annäherung ans Gleichgewicht, Eta-Theorem
 196

 20.3 Aufgaben
 201

Stoßoperators21122.1 Boltzmann-Kinetik eines 2d-Elektronengases21122.2 Aufgaben223

21.1 Kleine Abweichungen von der

22 Entwicklung nach Eigenfunktionen des

	Inhaltsverzeichnis	XV
23	Fokker-Planck-Gleichung	. 225
	23.1 Entwicklung nach kleinem Impulsübertrag	. 225
	23.2 Stationäre Lösung	
	$23.3 Verallgemeinerte Ginzburg-Landau-Potenziale \ldots.$. 230
	23.3.1Thermische Verteilung	. 230
	23.3.2Lasermodell	. 230
	23.3.3Nichtgleichgewichtsphasenübergang erster	
	Ordnung	. 231
	23.4 Eigenfunktionen	. 232
	23.5 Aufgaben	. 236
24	Nukleationstheorie	. 237
	24.1 Kramers-Moyal-Entwicklung	. 237
	24.2 Elektron-Loch-Tröpfchen-Nukleation in Halbleitern	
	24.3 Stationäre Lösung	. 240
	24.4 Aufgaben	. 242
25	Transportgleichungen	243
20	25.1 Erhaltungsgrößen und ihre Bewegungsgleichungen .	
	25.2 Aufgaben	
20		051
26	Reversible Hydrodynamik	
	26.1 Allgemeine Formulierung	
	26.2 Klassisches ideales Gas	
	26.3 Aufgaben	. 256
27	Hydrodynamik und Dissipation	
	27.1 Phänomenologische Theorie der dissipativen Terme	
	27.2 Aufgaben	. 261
28	Dissipative Koeffizienten	. 263
	28.1 Berechnung aus dem Boltzmann-Stoßterm	
	28.2 Aufgaben	. 269
29	Chapman-Enskog-Verfahren	. 271
-	29.1 Chapman-Enskog-Entwicklung	
	29.2 Dissipative Koeffizienten	
	29.3 Variationsprinzip	
	29.4 Aufgaben	

XVI Inhaltsverzeichnis

\mathbf{A}	Erzeugungs- und Vernichtungsoperatoren für		
	Fermionen		
	A.1 Symmetrie des Vielteilchenzustands		
	A.2 Fock-Raum		
	A.3 Beispiele: Verschiedene Hamilton-Operatoren 292		
	A.3.1 Ortsraumdarstellung des Hamilton-		
	Operators eines Elektronensystems 292		
	A.3.2 Impulsraumdarstellung des Hamilton-		
	Operators eines Elektronensystems 294		
${f L}$	Lösungen		
Sachverzeichnis			