Contents

1	Introduction	1
Pa for	I Short Primer on Basic Averaging and Modeling Approache Furbulent Mixing Instabilities	s
2	Single-Fluid Approach: Example of DAM's $k - \varepsilon$ Model	7
	2.1 Single-Fluid Statistical Equations	7
	2.2 An Elementary Single-Fluid Closure: The Incompressible $k-\varepsilon$	
	Model 1	1
	2.3 An Extension to Variable Densities: DAM's $k-\varepsilon$ Model 1	3
3	Iwo-Fluid Approach: Example	
	of Awe's Model 1	7
	3.1 Two-Fluid Statistical Equations 1	7
	3.2 An Elementary Two-Fluid Closure: Awe's Model 23	3

Summary of Part I 29

Part II "0D" Reduction of Experiments and Models in Mixing Instabilities

4	Mix	Mixing Instabilities in Developed Regime: Phenomenology	
	of E	Inergy Balances	33
	4.1	Review of Different Instability Types and Regimes	33
	4.2	"0D" Energy Balance in Self-Similar, Incompressible,	
		Developed Regime at Zero Atwood Number	34
	4.3	"0D" Turbulent Energy and Structure in Self-Similar,	
		Incompressible, Developed Regime at Zero Atwood Number	37

X Contents

	4.4	"0D"	Reduction of Evolution Equations	
		of Hy	drodynamic Models	43
_	-			
5	Rec	onstr	uction by DAM's $k - \varepsilon$ Model	
	of L	Develo	ped Mixing Instabilities	47
	5.1	Comr	nents on the "Richtmyer–Meshkov" Calibration	
		of Co	efficients $C_{\varepsilon 0}$ and σ_{ϱ}	47
	5.2	"0D"	Reconstruction by DAM's $k-\varepsilon$ Model	
		of Ba	sic Self-Similar Instabilities	49
		5.2.1	General Remarks, Reconstruction	
			of the Directed Kinetic Energy	49
		5.2.2	Construction and Resolution	
			of the "0D" Differential System	49
		5.2.3	Realizability of Turbulent Closures	54
		5.2.4	Estimation of Errors Introduced by the "0D" Approach.	54
	5.3	"0D F	Rayleigh–Taylor" Calibration of Coefficients $C_{\varepsilon 0}$ and σ_{ρ}	55
		5.3.1	Discussion of the "0D" Results	55
		5.3.2	Stability and the RT Case	
			with Self-Similar Variable Acceleration	56
		5.3.3	Conclusions on DAM's $k - \varepsilon$ Model	60
6	Awı	E's Tw	vo-Fluid Model of Developed Mixing Instabilities .	63
	6.1	"0D"	Reconstruction by Awe's Two-Fluid Model	
		of Ba	sic Self-Similar Instabilities	63
		6.1.1	General Remarks, Drag Characteristic Length Scale	63
		6.1.2	Rayleigh–Taylor and Richtmyer–Meshkov Cases	64
		6.1.3	Kelvin–Helmholtz Case	66
	6.2	Calib	ration of Coefficients C_i and C_d	
		of Aw	ve's Two-Fluid Model	70
		6.2.1	Effect of the Coefficients on KH, RT, and RM	
			Instabilities	70
		6.2.2	Stability and the RT Case	
			with Self-Similar Variable Acceleration	71
Sur	nma	ry of i	Part II	75

Part III Comparative Assessment of Models, New Development Approaches

7	Con	nparison of Single- and Two-Fluid Approaches	79
	7.1	Summary of "0D" Reconstructions of the Three Instabilities	
		by the Single- and Two-Fluid Models	79
	7.2	About the "Rayleigh–Taylor" Source Term	
		in Single-FluidModels	81

Contents	XI
----------	----

	7.3	Two-fluid Realizability of Single-Fluid Closures	
	7.4	The "Two-Fluid Extended" Single-Fluid Approach	
8	Spe 8.1 8.2 8.3 8.4	cific Treatment of Shocks: Constraints on Models93Qualitative Phenomenology of Interaction Between a Shockand Velocity or Density Heterogeneities93Preliminary Comments on Modeling of Shock–HeterogeneityInteraction96On Artificial Dissipation in a Two-Fluid Medium99Basic Bias Estimates of DAM's $k-\varepsilon$ and AWE's Two-FluidModels Applied to Shock–Turbulence Interaction102	
9	Som 9.1 9.2 9.3	he Perspectives on Further Developments of Models 107About Second-Order Extensionsof Single-Fluid Turbulent Mixing Models107Molecular Interdiffusion, Demixing, and Separationof Geometric and Turbulent Scales1099.2.1 Interdiffusion1099.2.2 Geometric and Turbulent Scales112(1) Self-Similar Variable Acceleration Rayleigh–Taylor1139.3.1 Extension of SSVARTs1139.3.2 Spectral Quasi-Equilibrium and Relevance of Models115	
Sur	nma	ry of Part III	
10	Con	clusion, Future Modeling Trends	
\mathbf{A}	Notations and Acronyms12		
в	Modeling of Noise Term129		
С	Correction of the Input Energy, K_I , of the Kelvin–Helmholtz Instability		
D	Turbulent Flux of k Expressed in Two-Fluid Terms13		
Е	About the Effects of Compressibility on Closures of Turbulent Fluxes		
Ref	eren	ces	
Ind	ex		