Table of Contents

1. Introduction			1		
	1.1	Rings as Characteristic Features of Astrophysical Discs	1		
	1.2	The Planetary Rings as Unique Disc Systems	4		
	1.3	The Planetary Rings as a Proving Ground for Theorists	5		
	1.4	Historical Journey	6		
2.	Observational Data				
	2.1	The Saturnian System	21		
	2.2	The Uranian System	35		
	2.3	The Jovian System	40		
	2.4	The Neptunian System	42		
	2.5	The Solar System	45		
	2.6	Accretion Discs	46		
	2.7	Galactic Discs	49		
	2.8	Comparative Analysis	51		
		2.8.1 Primary and Secondary Rings	51		
		2.8.2 Density Distribution in the Systems			
		of the Giant Planets	52		
		2.8.3 Dissipation in a Disc System	54		
		2.8.4 Table of the Parameters of Disc Systems	57		
3.	Cel	estial Mechanics Minimum	59		
	3.1	Basic Equations	59		
	3.2	Solution for a Single Point Particle	62		
	3.3	Main Perturbing Factors	68		
		3.3.1 Equations for the Osculating Orbital Elements	68		
		3.3.2 Satellite Orbit in the Field of an Aspherical Planet .	74		
		3.3.3 Effect of Aerodynamic Friction			
		on the Orbit of a Satellite	76		
		3.3.4 The Poynting–Robertson Effect	77		
		3.3.5 Collisions and Particle Orbits	78		

4.	Ele	menta	ry Particle Dynamics. I Rigid Body Collisions .	81
	4.1	Theor	retical Models	82
		4.1.1		
			of Smooth Spheres	82
		4.1.2	Break-Up of Ring Particles (Estimates)	84
		4.1.3	Model of Collisions Between Particles	
			Covered by Regolith	85
		4.1.4	Restitution Coefficient of a Smooth Particle	86
	4.2	-	rimental Data	87
		4.2.1	Comparison Between the Smooth Particle Model	0.7
		400	and the Experimental Data	87
		4.2.2	Restitution Coefficient of Particles Covered by a Regolith Layer	90
			Covered by a Regolith Layer	90
5 .	Ele		ry Particle Dynamics. II Ring Cosmogony	95
	5.1		or Collisions?	95
		5.1.1		
			the Region of the Primary Rings Is the Roche Zone .	96
		5.1.2	Collisional Break-Up of Particles	0.0
	F 0	D	in Grazing Collisions	98
	5.2		mics of Particle Fragments in the Four-Body Problem . ional Break-Up of Loose Bodies	100
	5.3		e Cause for the Existence of Planetary Rings	109
	5.4		cle Size Distribution	113
	0.4	1 arm	Size Distribution	110
6.			ry Particle Dynamics. III Wave, Photometric,	
			r Effects	115
	6.1		tellite in a Differentially Rotating Disc	115
	6.2		Large Bodies in a Disc of Small Particles	118
	6.3		lerer Particles in the Four-Body Problem	120
	6.4	Azımı	uthal Brightness Asymmetry of the Saturnian Rings	122
7.	Col	lective	e Dynamics of Disc Particles. I Formalism	131
	7.1	Trans	port Theories for Macroparticles	131
		7.1.1		
			in a Gravitational Field	134
		7.1.2	Derivation of the Moment Equations	135
		7.1.3	Integro-differential Equation	
			for the Non-equilibrium Correction	405
		— 4 4	to the Distribution Function	137
		7.1.4	Evaluation of the Vectorial Non-equilibrium	
			Correction to the Distribution Function.	1.40
			The Heat Flux Vector	140

		7.1.5	Evaluation of the Tensor Non-equilibrium				
			Correction to the Distribution Function.				
			The Viscous Stress Tensor	142			
	7.2	Kinet	ic Theory of Inelastic Macroparticles	145			
8.	Collective Dynamics of Disc Particles.						
	IIS	tabilit	ty Analysis	153			
	8.1	Gener	ral Dispersion Equation	153			
		8.1.1	Stability of a Uniformly Rotating Disc	155			
		8.1.2	A Differentially Rotating Disc of Inelastic Particles .	159			
	8.2	Analy	rsis of the Axisymmetric Oscillations of a Disc;				
		Instab	pilities Causing the Small-				
		and N	Medium-Scale Structure of the Rings	163			
		8.2.1	Gravitational Instability	163			
		8.2.2	Energy (Thermal) Instability	164			
		8.2.3	Negative Diffusion Instability	165			
		8.2.4	Analysis of the Dispersion Equation	166			
		8.2.5	Criteria for the Diffusion and Energy Instabilities				
			for Non-gravitating Smooth Spheres	168			
		8.2.6	Energy and Diffusion Instabilities				
			in a Model of Gravitating Particles	169			
	8.3		rsis of the Axisymmetric Oscillations of a Disc				
			Non-diffusion Fluxes; Accretion Instability –				
			ause of the Large-Scale Structure of the Rings	178			
	8.4		rsis of Non-axisymmetric Oscillations of a Disc –				
		Ellips	e Instability	184			
9.	Res	onanc	e Effects in Planetary Rings. I Spiral Waves	189			
	9.1	Densi	ty Waves	189			
		9.1.1	Frequency Multiplication in an Aspherical Field	190			
		9.1.2	Resonance Interaction of a Satellite				
			with Ring Particles (Two-Dimensional Case)	192			
		9.1.3	Spiral Waves Taking into Account				
			the Self-gravitation and Pressure of the Disc				
			(Two-Dimensional Case)	194			
	9.2	Bendi	ng Waves	196			
10.	Resonance Effects in Planetary Rings.						
	II N	Tarrow	Ringlets and Satellites	199			
	10.1		theses About the Origin of the Uranian Rings	199			
			The Remarkable Properties of the Uranian Rings	199			
			Hypotheses About the Connection Between				
			the Rings and the Five Known Uranian Satellites	200			

		10.1.3	Hypotheses About Unknown Satellites in the Rings and "Shepherd" Satellites	201
		10.1.4	Hypothesis About the Resonance Nature of the Uranian Rings and the Existence of a Series of Undiscovered Satellites Beyond the Boundary	
		10.1.5	of the Rings	201
			of Hypothetical Satellites	202
			Detection of New Uranian Satellites	205
	10.2		ation Between the Uranian Rings	
			atellite Resonances	205
		10.2.1	Distribution of the Distances Between the Rings	205
		10.2.2	and the Resonances Correlation Between the Positions of the Rings	205
		10.2.3	and Resonances A Study of the Resonance System of Uranian Rings	207
			Using the Correlation Coefficient	209
11	Form	nation	and Stability of the Uranian Rings	213
тт.			and Stability of the Graman Rings	216
		-	le Drift in the Uranian Proto-disc	219
	11.2		Aerodynamic Drift in an Expanding Proto-disc	219
			Qualitative Discussion of the Ballistic Drift	$\frac{219}{222}$
			Estimates of the Ballistic Drift	222
		11.2.0	and of the Aerodynamic Friction	226
		11.2.4	Numerical Calculation of the Ballistic Drift	
			in the Present System of Rings	230
	11.3	Forma	tion of the Uranian Rings	_00
			Inner Lindblad Resonances	233
			Elementary Capture Dynamics	234
			Numerical Calculation of Particle Capture	
			in Inner Lindblad Resonances	238
	11.4	The P	resent-Day Uranian Ring System	243
		11.4.1	Epoch of Free Drift of the Rings and Its Finale	
			with the Participation of Cordelia and Ophelia	243
		11.4.2	Contemporary Picture of the Drift Equilibrium	
			in the Rings and the Formation	
			of the 1986U1R or λ Ring	245
			Dust Structures in the Rings	247
		11.4.4	On the Stability of the Sharp Edge	
			of Non-resonance Elliptical Rings	249
			Biographical Information About the Uranian Rings $$.	250
	11.5	Conclu	usions	251

		Contents	XIX
12.	Orig	gin, Dynamics, and Stability of the Neptunian Rings	253
	12.1	Hypotheses About the Dynamics	
		of the Incomplete Neptunian Rings (Arcs)	253
		12.1.1 Dynamical Models of the Neptunian Arcs	
		in the Framework of the "Shepherd" Concept	253
		12.1.2 Model of Intrinsically Stable Neptunian Arcs	
		on a Continuous Ring	255
		12.1.3 The Voyager-2 Fly-Past near Neptune	
		in August 1989	256
		12.1.4 Connection Between Satellite Resonances	
		and the Neptunian Rings	258
	12.2	Stability of a Separate Epiton	259
		12.2.1 Particle Motion in an Epiton	259
		12.2.2 Stability of an Epiton of Inelastic Particles	262
		12.2.3 Evolution of an Epiton in Resonance	0.05
	10.0	with a Satellite	265
	12.3	Formation of Arcs on a Continuous Ring	274
		12.3.1 Break-Up of a Ring Under the Action	97/
		of a Satellite Resonance	$\frac{274}{276}$
		12.3.2 Interaction Between an Epiton and a Ring	279
		12.3.4 General Scenario for the Origin of the System	218
		of Neptunian Arcs	282
		of Neptulian Arcs	202
13.	Self	organisation of the Solar System	285
	13.1	Conditions for the Development of Spatial Structures	285
		13.1.1 Self-organisation of Open Systems	286
		13.1.2 Gravitational Self-organisation	287
	13.2	The Law of the Planetary Distances	287
		13.2.1 Tendency of the Solar System	
		Towards Self-organisation	287
		13.2.2 Dissipative Instability and the Law	
		of the Planetary Distances	290
		13.2.3 Proposed Characteristics of the Proto-disc	292
14.	Spa	ce Studies of the Outer Planets	297
	_	Space Successes in the Period 1959–1989	297
		The Voyager Missions	301
		The Cassini Mission	303
		The Chronos Mission	305
		The Infrastructure of Planetary Physics	308

Appendices

I.			ibility of Studying the Dynamics ohysical Discs in a Two-Dimensional Approach	315
	1. 2.		duction	$\frac{315}{316}$
	2.	_	nal Equations for the "Volume" Functions	
		$\frac{2.1}{2.2}$	Initial Dynamic Equations	$\frac{316}{317}$
	3.		Equation of State	317
	э.		ration of the Basic Equations ne "Plane" Functions	318
		3.1	Order-of-Magnitude Estimates of the Terms	310
		3.1	in the Initial Equations	318
		3.2	The Two Limiting Cases of Astrophysical Discs	321
		$\frac{3.2}{3.3}$	Limitations of the Characteristic Times of Processes	321
		0.0	Studied in the Two-Dimensional Approximation	326
		3.4	Closed System of Integro-differential Equations	520
		0.4	for a Barotropic Disc	328
	4.	Close	d Set of Differential Equations for a Polytropic Disc	020
	1.		External Gravitational Field	330
		4.1	Derivation of the Two-Dimensional Equations	330
		4.2	Special Case of the Potential $\Phi_0 = \Phi_0(r), \Phi_0' = 0$	333
		4.3	The Applicability of $C = \text{constant}$	334
	5.	Close	d Set of Differential Equations for a Polytropic	
			gravitating Disc	335
		5.1	Derivation of the Two-Dimensional Equations	335
		5.2	Why Does the Gradient of the Plane Pressure	
			Not Have the Physical Meaning of a Force?	338
	6.	Conc	lusion	339
II.			aplitude Waves in a Disc	
	$\mathbf{W}\mathbf{h}$	ich A	re Symmetric with Respect to Its $z = 0$ -Plane .	341
	1.	Deriv	ration of a Closed Set of Integro-differential Equations .	341
	2.	Deriv	ration of the Dispersion Equation	
			ribing the Three-Dimensional Perturbations	345
	3.		ion of the Poisson Equation for a Disc	
			h	347
	4.	_	ersion Relation for Waves in the Plane of the Disc	350
	5.		Role of Perturbations Along the Rotation Axis	351
		5.1	Condition for Neglecting Mass Transfer	_
			Along the Rotation Axis	352
			5.1.1 General Case	
			5.1.2 Isothermal Disc	354

		Contents	XXI
		5.2 Condition for Neglecting the Inertial Term in the Equation of Motion in the z -Direction—Condition	
	6.	for Neglecting Oscillations Along the Rotation Axis . Conclusion	$355 \\ 357$
III	. Der	ivation of the Linearised Equations for Oscillations	
		Viscous Disc	359
	1.	Derivation of the Linearised Equations for Oscillations	
		of a Viscous Uniformly Rotating Disc	359
	2.	Derivation of the Linearised Equations for Oscillations	
		of a Viscous Differentially Rotating Disc of Inelastic	
		Particles with Account of External Matter Fluxes	361
	3.	Derivation of the General Dispersion Equation	369
IV		luating the Gravitational Potential	
	Insi	de and Outside a Triaxial Ellipsoid	371
	1.	Potential Inside the Ellipsoid	371
	2.	Potential Outside the Ellipsoid	375
T 7	A T) (C)] (T) (C) (T) (C) (T) (C) (T) (C) (T) (T)	
V.		Orift Mechanism for the Formation he Cassini Division	270
			379
	1.	Introduction	379
	2.	Statement of the Problem	385
	3.	Derivation of the Non-linear Momentum	200
	4.	Conservation Equations	388
	4.	Conservation Equations	390
	5.	Absence of Averaged Radial Mass Flux	390
	5.	in a Dissipationless Disc. Large-Scale Convection	392
	6.	Radial Mass Transfer in a Viscous Disc	395
	7.	Evolution of the Surface Density of a Disc	400
	8.	Conditions for the Formation of Different Types	100
	0.	of Resonant Structures: Gaps or Wavetrains?	401
	9.	Estimate of the Maximum Width of a Gap Produced	101
	٠.	by a Density Wave	405
	10.		406
	10		
	10.	Some Additional Remarks	

 VI. Resonance Structures in Saturn's C Ring
 409

 References
 419

 Index
 429