Contents

1.	Introduction				
	1.1	Historical Remarks	1		
	1.2	Surface Space-Charge and Surface States:			
		Some Preliminary Remarks	13		
2.	Surface Space-Charge Region in Thermal Equilibrium				
	2.1	Solutions of Poisson's Equation	21		
	2.2	Surface Space-Charge	25		
	2.3	Shape of Surface Barriers	27		
	2.4	Comparison of Space-Charge Layers			
		at Semiconductor and Metal Surfaces	28		
	2.5	Quantum Size-Effects in Space-Charge Layers	28		
3.	Sur	Surface States			
	3.1	Virtual Gap States of the Complex Band Structure	33		
	3.2	Intrinsic Surface States: Nearly Free Electron Model	36		
	3.3	Intrinsic Surface States: Tight-Binding Approximation	44		
	3.4	Dangling Bonds	47		
	3.5	Adatom-Induced Surface States: Tight-Binding Approach	51		
	3.6	Adatom-Induced Surface Dipoles: Electronegativity Concept .	53		
	3.7	Adatom-Induced Surface States and Dipoles: ViGS Model \ldots	56		
4.	Oco	cupation of Surface States and Surface Band-Bending			
	in 7	Thermal Equilibrium	59		
5.	Sur	face Space-Charge Region in Non-Equilibrium	67		
	5.1	Surface Photovoltage	67		
	5.2	Dember Effect	73		
	5.3	Surface Transport	74		
		5.3.1 Surface Excess of Carriers	74		
		5.3.2 Surface Conductance	76		
		5.3.3 Surface Mobility	76		
		5.3.4 Field Effect of Surface Conductance	78		

6.	Interface States					
	6.1	Metal–Semiconductor Contacts: Metal–Induced Gap States 81				
	6.2	MIGS-and-Electronegativity Model				
		of Metal–Semiconductor Contacts				
	6.3	Slope Parameters of Barrier Heights in Schottky Contacts 91				
	6.4	Defects at Metal–Semiconductor Interfaces				
	6.5	Band Lineup in Semiconductor Heterostructures:				
		IFIGS-and-Electronegativity Model				
	6.6	Band Lineup at Semiconductor Heterostructures:				
		Tight-Binding Approach 98				
	6.7	Historical Notes 100				
7.	Cle	aved {110} Surfaces of III-V				
	and	II-VI Compound Semiconductors				
	7.1	Ionicity and Core-Level Spectroscopy				
		of Compound Semiconductors 105				
		7.1.1 Layer Model of Photoemitted Electrons 105				
		7.1.2 Charge Transfer in the Bulk				
		of Compound Semiconductors 109				
	7.2	Surface Core-Level Shifts 112				
	7.3	Geometrical Surface Structure				
	7.4	Surface Phonons				
	7.5	Electronic Surface States				
		7.5.1 Intrinsic Versus Extrinsic Surface States 128				
		7.5.2 Cleavage-Induced Surface States:				
		InAs(110) as an Example				
		7.5.3 Intrinsic Surface States				
	7.6	Temperature Dependence of the Ionization Energy 137				
	7.7	Chemical Trends of the Ionization Energy 140				
8.	${10}$	0} Surfaces of III-V, II-VI,				
	and	I-VII Compound Semiconductors				
	wit	h Zincblende Structure 145				
	8.1	Reconstructions and Trends in Chemical Compositions 145				
	8.2	Dimerization				
	8.3	Missing Dimer Structures				
	8.4	Dimerization, Occupation of Dangling Bonds,				
		and Electron Counting 161				
	8.5	Intrinsic Surface Band Structure 166				
	8.6	Fermi-Level Pinning by Extrinsic Surface States 167				
	8.7	Ionization Energy 168				
9.	{10	0} Surfaces of Diamond, Silicon, Germanium,				
	and	Cubic Silicon Carbide 169				
	9.1	Atomic Arrangement				

	9.2	Strain I	Effects on Si(001) Surfaces	175
	9.3	Electro	nic Surface Properties	177
	9.4	Surface	e Core-Level Shifts	181
	9.5	Reversi	ble $2 \times 1 \rightleftharpoons c(4 \times 2)$ Surface Phase Transition	183
	9.6	β -SiC(0	001) Surfaces	186
10.	Dia	mond.	Silicon, and Germanium	
10.	{111	$1 - 2 \times 1$	1 Surfaces	193
	10.1	Cleaved	d Silicon and Germanium Surfaces	194
	-	10.1.1	Early Models of $(111)-2 \times 1$ Reconstructions	-
			and Core-Level Shifts	194
		10.1.2	Band Structure of Dangling-Bond Surface States:	
			Experimental Data	197
		10.1.3	Surface Band Gap	202
		10.1.4	Tilted Chains	206
		10.1.5	Band Structure of Dangling-Bond Surface States:	
			Theoretical Results	213
	10.2	Clean I	Diamond $\{111\}$ Surfaces	213
		10.2.1	Atomic Arrangement	213
	10.9	10.2.2 Olaren I	Electronic Properties	215
	10.3	Clean I	Jiamond and Cleaved Sincon	017
		and Ge	amanum {111} Surfaces in Comparison	211
11.	Si(1	11)-7 ×	7 and Ge(111)-c(2 \times 8) Surfaces	219
	11.1	Prepara	ation of Clean Si(111)-7 \times 7	
		and Ge	$c(111)-c(2 \times 8)$ Surfaces 2	219
	11.2	and Ge Si(111)	$c(111)$ - $c(2 \times 8)$ Surfaces	219 221
	11.2	and Ge Si(111) 11.2.1	$\begin{array}{l} (111)-c(2 \times 8) \text{ Surfaces } \dots & \\ -7 \times 7: \text{ Atomic Arrangement } \dots & \\ \text{Elements of the } 7 \times 7 \text{ Reconstruction} \end{array}$	219 221
	11.2	and Ge Si(111) 11.2.1	$\begin{array}{l} (111)-c(2 \times 8) \text{ Surfaces } \dots & (2 \times 3) \\ -7 \times 7; \text{ Atomic Arrangement } \dots & (2 \times 3) \\ \text{Elements of the } 7 \times 7 \text{ Reconstruction} \\ \text{ on Si}(111) \text{ Surfaces } \dots & (2 \times 3) \\ \text{Surfaces } \dots & (2 \times 3)$	219 221 221
	11.2	and Ge Si(111) 11.2.1 11.2.2	$\begin{array}{l} (111)-c(2 \times 8) \text{ Surfaces } \dots & (2 \times 3) \\ -7 \times 7; \text{ Atomic Arrangement } \dots & (2 \times 3) \\ \text{Elements of the } 7 \times 7 \text{ Reconstruction} \\ \text{ on Si}(111) \text{ Surfaces } \dots & (2 \times 3) \\ \text{Dimer-Adatom-Stacking Fault Model } \dots & (2 \times 3) \\ \end{array}$	219 221 221 221 225
	11.2 11.3	and Ge Si(111) 11.2.1 11.2.2 Ge(111	$\begin{array}{l} (111)-c(2\times8) \text{ Surfaces } \dots & (2\times8) \\ -7\times7 \text{ Atomic Arrangement } \dots & (2\times8) \\ \text{Elements of the } 7\times7 \text{ Reconstruction} \\ \text{on Si}(111) \text{ Surfaces } \dots & (2\times8) \\ \text{Dimer-Adatom-Stacking Fault Model } \dots & (2\times8) \\ -c(2\times8) \text{ Atomic Arrangement } \dots & (2\times8) \\ \text{Atomic Arrangement } \dots & (2\times8) \\ \text{Structure of Si}(111) & 7\times7 \end{array}$	219 221 221 225 229
	11.211.311.4	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro	$\begin{array}{l} (111)-c(2 \times 8) \text{ Surfaces} \dots & (2 \times 7) \\ -7 \times 7: \text{ Atomic Arrangement} \dots & (2 \times 7) \\ \text{Elements of the } 7 \times 7 \text{ Reconstruction} \\ \text{on Si}(111) \text{ Surfaces} \dots & (2 \times 7) \\ \text{Dimer-Adatom-Stacking Fault Model} \dots & (2 \times 7) \\ -c(2 \times 8): \text{ Atomic Arrangement} \dots & (2 \times 7) \\ \text{nic Structure of Si}(111)-7 \times 7 \\ (111) \ c(2 \times 8) \text{ Surfaces} \end{array}$	219 221 221 225 229
	11.2 11.3 11.4	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 219 221 221 225 229 232 232 232 232 232
	11.2 11.3 11.4	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 219 221 221 225 229 232 232 232 234
	11.2 11.3 11.4	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energe	$\begin{array}{llllllllllllllllllllllllllllllllllll$	219 221 221 225 229 232 232 234
	11.211.311.411.5	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energet of Si ar	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 219 221 221 225 229 232 232 232 234 237
	11.211.311.411.5Diamondary and a set of the set of the	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energet of Si ar	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 219 221 221 225 229 232 232 234 237
12.	 11.2 11.3 11.4 11.5 Pha (11) 	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energet of Si ar se Tran	$\begin{array}{l} (111)-c(2\times8) \text{ Surfaces} \dots & (2\times1) \\ -7\times7; \text{ Atomic Arrangement} \dots & (2\times1) \\ \text{Elements of the } 7\times7 \text{ Reconstruction} \\ \text{on Si}(111) \text{ Surfaces} \dots & (2\times1) \\ \text{Dimer-Adatom-Stacking Fault Model} \dots & (2\times1) \\ -c(2\times8); \text{ Atomic Arrangement} \dots & (2\times1) \\ -c(2\times8); \text{ Atomic Arrangement} \dots & (2\times1) \\ \text{inc Structure of Si}(111)-7\times7 \\ -c(111)-c(2\times8) \text{ Surfaces} \dots & (2\times1) \\ -c(2\times8); \text{ Surfaces} \dots & (2\times1) \\ -c(2\times1); \text{ Surfaces} \dots & (2\times1) \\$	 219 221 221 225 229 232 232 234 237 241
12.	11.2 11.3 11.4 11.5 Pha {11: 12:	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energet of Si ar se Tran } Surf Si(111)	$\begin{array}{l} \text{e}(111)\text{-c}(2\times8) \text{ Surfaces} \dots & \text{final} \\ \text{-7}\times7; \text{ Atomic Arrangement} \dots & \text{final} \\ \text{Elements of the } 7\times7 \text{ Reconstruction} \\ \text{on Si}(111) \text{ Surfaces} \dots & \text{final} \\ \text{Dimer-Adatom-Stacking Fault Model} \dots & \text{final} \\ \text{Dimer-Adatom-Stacking Fault Model} \dots & \text{final} \\ \text{-2}\times8); \text{ Atomic Arrangement} \dots & \text{final} \\ \text{-2}\times8); \text{ Atomic Arrangement} \dots & \text{final} \\ \text{-2}\times8); \text{ Atomic Arrangement} \dots & \text{final} \\ \text{Surfaces} \dots & \text{final} \\ \text{Core-Level Spectroscopy} \dots & \text{final} \\ \text{Core-Level Spectroscopy} \dots & \text{final} \\ \text{core final Structure on Silicon and Germanium} \\ \text{final Ges} \dots & \text{final Silicon and Germanium} \\ \text{final Surfaces} \dots & \text{final Structure} \dots & \text{final Structure} \\ \text{final Surfaces} \dots & \text{final Silicon and Germanium} \\ \text{final Surfaces} \dots & \text{final Structure} \dots & \text{final Structure} \end{pmatrix}$	 219 221 221 225 229 232 232 234 237 241
12.	 11.2 11.3 11.4 11.5 Pha {11: 12:1 	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energe of Si ar se Tran 1} Surf Si(111)	$\begin{array}{l} \text{e}(111)\text{-c}(2\times8) \text{ Surfaces} \dots & \text{for } \\ \text{-7}\times7\text{: Atomic Arrangement} \dots & \text{for } \\ \text{Elements of the } 7\times7 \text{ Reconstruction} \\ \text{on Si}(111) \text{ Surfaces} \dots & \text{for } \\ \text{Dimer-Adatom-Stacking Fault Model} \dots & \text{for } \\ \{for } \\ \text{for } \\ \{for } \\ \text{for } \\ \{for } \\ \{for } \\ \text{for } \\ \{for } \\ $	 219 221 221 225 229 232 232 234 237 241 241
12.	 11.2 11.3 11.4 11.5 Pha {11:2 12:1 12:2 	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energer of Si ar se Tran 1} Surf Si(111) and Ge Ce(111	$e(111)-c(2 \times 8) \text{ Surfaces} $ $e(111)-c(2 \times 8) \text{ Surfaces} $ $e(111)-c(2 \times 8) \text{ Construction} $ $e(111) \text{ Surfaces} $ $f(11) \text{ Surfaces} $ $f(11) \text{ Surfaces} $ $e(111)-c(2 \times 8) \text{ Surfaces} $ $e(111) \text{ Surfaces} $ $e(111)-c(2 \times 8) \text{ Surfaces} $ $e(111) \text{ Surfaces} $ $e(11) \text{ Surfaces} $ $e(11) \text$	219 221 2225 2229 232 232 234 237 241 241
12.	 11.2 11.3 11.4 11.5 Pha {11.1 12.1 12.2 12.2 12.3 	and Ge Si(111) 11.2.1 11.2.2 Ge(111 Electro and Ge 11.4.1 11.4.2 Energet of Si ar se Tran 1} Surf Si(111) and Ge Ge(111 Irrevers	$e(111)-c(2 \times 8) \text{ Surfaces} \dots (2)$ $e(111)-c(2 \times 8) \text{ Surfaces} \dots (2)$ $e(111)-c(2 \times 8) \text{ Construction} (2)$ $e(111) \text{ Surfaces} \dots (2)$ $e(111) \text{ Surfaces} \dots (2)$ $e(111)-c(2 \times 8) \text{ Surfaces} \dots (2)$ $e(111) \text{ Surfaces} \dots (2)$ $e(111)-c(2 \times 8) \implies (1 \times 1)^{n} \text{ Phase Transitions} \dots (2)$ $e(111)-c(2 \times 8) \implies (1 \times 1)^{n} \text{ Phase Transition} \dots (2)$ $e(111)-c(2 \times 8) \implies (1 \times 1)^{n} \text{ Phase Transition} \dots (2)$ $e(111)-c(2 \times 8) \implies (1 \times 1)^{n} \text{ Reconstructions} \dots (2)$	 219 221 221 225 229 232 232 234 237 241 241 246

13.	{11	1} Surf	aces of Compounds with Zincblende Structure .	255		
	13.1	[111]-0	riented Surfaces	255		
	13.2	$[\overline{111}]-O$	riented Surfaces	257		
14.	Moi	novalen	t Adatoms	263		
	14.1	Adsorp	tion of Halogens	263		
		14.1.1	Dissociative Adsorption	263		
	14.0	14.1.2	Bond Lengths and Adsorption Sites	269		
	14.2	Adsorp	tion of Hydrogen	272		
		14.2.1	$S_1(001)$:H-Surfaces	272		
		14.2.2	Si(111):H- $\partial(7 \times 7)$ Surfaces	275		
	110	14.2.3	Si(111)- and Ge(111):H-1 \times 1 Surfaces	276		
	14.3	Alkalı a	and Silver Adatoms on Si{100} Surfaces	280		
	14.4	Monova	alent Metal Adatoms on Si and Ge $\{111\}$ Surfaces	283		
		14.4.1	Alkali Adatoms on Si(111)-7 \times 7 Surfaces	283		
		14.4.2	S1(111):Ag- and Ge(111):Ag- $(\sqrt{3} \times \sqrt{3})$ R30°	004		
		1440	Structures (111) A $(\sqrt{2}, \sqrt{2})$ Dool	284		
		14.4.3	SI(111):Au- and Ge(111):Au- $(\sqrt{3} \times \sqrt{3})$ R30°	0.07		
		1 4 4 4	Structures	287		
		14.4.4	3×1 Reconstructions induced by Alkali	000		
	14 5	a u	and Sliver Adatoms on SI (111) Surfaces \dots	288		
	14.5	Growtr	1 Kinetics of Metals on Cleaved GaAs(110) Surfaces	291		
	14.0	Adator	n-Induced Surface Core-Level Shifts	300		
	14.1	Adator	Meteral Latence digues in Diana America	307		
		14.(.1	Mutual Interactions in Plane Arrays	207		
		1479	Configurate Dipoles	307		
		14.(.2	Surface Dipoles Induced by Alkali Adatoms	309		
	14.0	14.7.3	Hydrogen-Induced Surface Dipoles	311		
	14.8	Adator	n-Induced Surface States	310 91C		
		14.8.1	Metal Adatoms on Cleaved SI Surfaces	310 917		
		14.8.2	Metal Adatoms on $GaAs(110)$ Surfaces	201		
		14.8.3	Nonmetal Adatoms on GaAs(110) Surfaces	324		
15	Gro	un-III	Adatoms on Silicon Surfaces	329		
10.	15.1	Si(111)	\cdot III- $(\sqrt{3} \times \sqrt{3})$ B30° Beconstructions	329		
	10.1	15.1.1	Al-, Ga-, and In-Induced $(\sqrt{3} \times \sqrt{3})$ B30°	0_0		
		10.1.1	Reconstructions	330		
		15.1.2	B-Induced $(\sqrt{3} \times \sqrt{3})$ B30° Reconstruction	333		
	15.2	Recons	tructions Induced by Group-III Adatoms	000		
	10.2	on {100)} Surfaces of Si and Ge	334		
		(0	- ,			
16.	Gro	up-V A	Adatoms	339		
	16.1	Si(111)	:As-1 \times 1 and Si(001):As- and Si(001):Sb-2 \times 1			
	Surfaces					

	16.2 Sb- an	d Bi-induced ($\sqrt{3} \times \sqrt{3}$)R30° Structures
	on Si a	and $Ge(111)$ Surfaces
	16.3 GaP-,	GaAs-, and $InP(110)$:Sb-1 × 1 Surfaces
	16.4 III-V((10):Bi-1 × 1 Surfaces
	(
17.	Oxidation	of Silicon and III-V Compound
	Semicondu	actors
	17.1 Si(111) Surfaces
	17.1.1	Precursor-Mediated Chemisorption
		on Si(111)-7 \times 7 Surfaces
	17.1.2	Oxygen-Induced $Si(2p)$ Core-Level Shifts
	17.1.3	Field-Assisted Oxidation
	17.2 III-V (Compound Semiconductors
	17.2.1	Oxidation Kinetics on GaAs(110) Surfaces
	17.2.2	Photon-Stimulated Oxidation
	17.2.3	Core-Level Spectroscopy:
		Growth Mode and Composition of Oxide Films 372
		•
18.	Surface Pa	assivation by Adsorbates and Surfactants 377
	18.1 Surfac	e Passivation by Hydrogen 377
	18.2 Surfac	tant-Mediated Growth
19.	Semicondu	ictor Interfaces
	19.1 Metal-	-Semiconductor Contacts
	19.1.1	Current Transport
		Across Metal–Semiconductor Contacts
	19.1.2	Image-Force Effect
	19.1.3	Determination of Barrier Heights:
		A Brief Comparison of Methods
	19.1.4	Barrier Heights of Real Schottky Contacts 392
	19.1.5	Laterally Inhomogeneous Schottky Contacts 1:
		Circular Patches
	19.1.6	Laterally Inhomogeneous Schottky Contacts 2:
		BEEM
	19.1.7	Laterally Inhomogeneous Schottky Contacts 3:
		I/V Characteristics
	19.1.8	The MIGS-and-Electronegativity Concept:
		Experiment and Theory 411
	19.1.9	Direct Observations of MIGS 418
	19.1.10) Extrinsic Interface Dipoles 1: Interface Doping $\dots \dots 420$
	19.1.11	Extrinsic Interface Dipoles 2:
		$Metal/Si(111)-(7 \times 7)^{i} Contacts \dots 424$
	19.1.12	2 Extrinsic Interface Dipoles 3:
		Epitaxial Silicide/Silicon Interfaces

19	.1.13	Origin of Lateral Barrier-Height Inhomogeneities 1:	
		Natural Nonuniformities	134
19	.1.14	Origin of Lateral Barrier-Height Inhomogeneities 2:	
		Extrinsic Nonuniformities 4	135
19	.1.15	Slope Parameter 4	37
19	.1.16	Schottky Contacts on Ternary III-V Alloys 4	39
19	.1.17	Temperature and High-Pressure Effects 4	44
19	.1.18	Ohmic Contacts 4	51
19.2 Set	micor	nductor Heterostructures 4	155
19	.2.1	Band-Structure Lineup 4	155
19	.2.2	Interface Dipoles at Polar Interfaces 4	157
19	.2.3	Lattice-Matched Ternary and Quaternary	
		III-V Alloys 4	61
19	.2.4	Pressure and Temperature Dependence	
		of Valence-Band Offsets 4	67
19	.2.5	Pseudomorphic Interfaces 4	68
19	.2.6	Metamorphic Heterostructures 4	71
19.3 La	yered	Semiconductors 4	72
19.4 Ins	sulato	or Interfaces	176
19	.4.1	Metal–Insulator Contacts 4	76
19	.4.2	Semiconductor–Insulator Interfaces 4	79
Appendix.			83
References	8		87
Index of R	econ	structions and Adsorbates 5	535
Subject In	\mathbf{dex}		539