Contents

1 R	ole of I	Defects and Disorder	
in th	ne Half	-Metallic Full-Heusler Compounds	
I. Ge	alanakis	, K. $\ddot{O}zdo\tilde{g}an$, and E. $asio\tilde{g}lu$	1
1.1	Introdu	uction	1
1.2	Defects	s in Full-Heuslers Containing Co and Mn	3
1.3	Defects	s Driven Half-Metallic Ferrimagnetism	7
1.4	A Poss	sible Route to Half-Metallic Antiferromagnetism	11
1.5	Vacano	cies	13
1.6	Summa	ary and Outlook	14
Refe	rences .		16
2	luctori	ag in Housion Allows	
	akahani	V Schartion and K Venergenalan	91
N.L	Intrody	v. Sebusitan, and K. venugopatan	21 91
2.1	Ernori	mental Mathada	21
2.2	Experi Dogult	and Disgussion	24
2.0	1 1 2 2 1	Y Pay Diffraction Studios	24
	2.J.1 9.2.9	Mössbauer Studies	24
	2.0.2	DC Magnetization Studies	20
Rofo	2.3.3		34
neie	iences .		94
3 A	nisotro	py of Ferromagnetic Heusler Alloys Thin Films	
R. Y	'ilgin an	d B. Aktas	37
3.1	Introdu	uction	37
	3.1.1	TMR and GMR Effects	38
	3.1.2	Critical Current	39
	3.1.3	Theoretical Background	41
3.2	The T	heory of Ferromagnetic Resonance	42
	3.2.1	Dynamics of Magnetization	42
	3.2.2	Resonance Field for Polycrystalline Film	44

Х	Contents
11	Contentos

	3.2.3	Ferromagnetic Resonance in Single Crystalline Film	45
	3.2.4	Line-Width of Resonance Absorption	47
3.3	Introd		50
	3.3.1	Sample Preparation	50
	3.3.2	Magnetic Characterizations	53
	3.3.3	FMR Results	55
3.4	Conclu	sions	62
Refe	rences .		64
4 Q	uantun	n Monte Carlo Study	
of A	nderso	n Magnetic Impurities in Semiconductors	
<i>N. E</i>	Bulut, Y.	Tomoda, K. Tanikawa, S. Takahashi, and S. Maekawa	67
4.1	Introd	uction	67
4.2	Model		69
4.3	Two-D	imensional Case	71
	4.3.1	Magnetic Correlations Between the Impurities	71
	4.3.2	Impurity–Host Correlations	76
4.4	Three-	Dimensional Case	79
4.5	Tight-	Binding Model for a Mn d Orbital in GaAs	82
4.6	Discus	sion and Summary	84
Refe	rences .	· · · · · · · · · · · · · · · · · · ·	86
5 N	ew Typ	be of Nanomaterials:	
Dop	ed Ma	gnetic Semiconductors	
Con	tained	Ferrons, Antiferrons, and Afmons	
L.I.	Korolev	a and D.M. Zashchirinskii	89
5.1	Introd	uction	89
5.2	Ferron	S	90
	5.2.1	Giant Red Shift of Fundamental Absorption Edge	
		Connected with Ferromagnetic Ordering	90
	5.2.2	Notion of Ferrons	92
	5.2.3	Electrical Resistivity and Magnetoresistance	
		of Nondegenerate Ferromagnetic Semiconducrors	
		with <i>n</i> -Type of Electrical Conductivity	94
	5.2.4	Magnetic Two-Phase Ferromagnetic–Antiferromagnetic	-
	0.2.1	State in Manganites	99
	525	Antiferrons	103
	5.2.0	Afmons	108
Refe	rences		110
ricie			110
6 C	erium-l	Doped Yttrium Iron Garnet Thin Films Prepared	

by Sol-Gel Process: Synthesis, Characterization, and Magnetic Properties Y. Öztürk, I. Avan, M. Erol, and E. Celik

Y.	Öztürk, I. Avgın, M. Erol, and E. Çelik	113
6.1	Introduction	114
6.2	Experimental Details	117

Contents	XI
----------	----

6.3	Results and Discussion
6.4	Summary and Conclusions
Refe	rences
7 10.	uning the Magnetic and Electropic Dreporties
	Annapolita Thin Films by Enitoxial Strain
	Audoada V Kara and H U Habarmaian 131
7 1	Introduction 121
7.2	Propagation and Analysis of Films
1.2	7.2.1 Deposition Technique and Film Crowth 135
	7.2.1 Deposition rechnique and r nin Growth
73	Structural Characterization Electrical
1.0	and Magnetic Properties of Manganites Film 138
	7.3.1 Structural Characterization 138
	7.3.2 Magnetic Properties 139
	7.3.3 Electrical Properties 142
74	General Discussion 144
7.5	Conclusions
Refe	rences
8 R	adiation Nanostructuring of Magnetic Crystals
V.A.	. Ageev, V.I. Kirischuk, Yu.V. Koblyanskiy, G.A. Melkov,
L.V.	Sadovnikov, A.N. Slavin, N.V. Strilchuk, V.I. Vasyuchka,
and	V.A. Zheltonozhsky149
8.1	Introduction
8.2	The Influence of Inhomogeneities upon the Properties
0.9	of Ferrites and Ferrite Devices
8.3	Wave-Front Reversal in a Medium with Innomogeneities
8.4 0 E	Experimental Results
0.0 8.6	Conclusions 164
0.0 Dofo	Conclusions
neie	Tences
9 E	lectromagnetic Radiation of Micro
and	Nanomagnetic Structures with Magnetic Reversal
B.A.	Gurovich, K.E. Prikhodko, E.A. Kuleshova, A.G. Domantovsky,
K.I.	Maslakov, and E.Z. Meilikhov167
9.1	Introduction
9.2	Experimental
9.3	Results and Discussion
	9.3.1 Coercivity Static Measurements
	of Magnetic Patterned Media170
	9.3.2 The Dependence of the Amplitude
	and Duration of Emitted Signal
	on the External Magnetic Field Amplitude

XII	Contents	
-----	----------	--

	9.3.3	Experimental Determination
		of Dynamic Emitted Parameters
		of Magnetic Patterned Media174
	9.3.4	Dependence of Dynamical Coercivity of Bit Arrays
		with Underlayer on the Bits Structural Geometry176
	9.3.5	Peculiarities of the Magnetic Structure of Cobalt Bits
		with and without a Soft Magnetic Underlayer177
9.4	Conclu	usions
Refer	ences .	
10.0		
10 S	tructu	ral and Magnetic Properties
and	Prepa	ration Techniques
of N	anosiz	ed M-type Hexaferrite Powders
T. K	outzaro	va, S. Kolev, C. Ghelev, K. Grigorov, and I. Nedkov
10.1	Introdu	uction
10.2	Crysta	lline Structure
10.3	Magne	tic Properties
10.4	Metho	ds for Preparation
10.5	Microe	mulsion Technique
Refer	ences .	
	_	
11 N	anocr	ystallization and Surface Magnetic Structure
of Fe	erroma	gnetic Ribbons and Microwires

12 On Structural and Magnetic Properties

of $Fe_{73.5-x}Si_{13.5}B_9Cu_1Nb_3Mn_x$ Metal Alloys	
R. Brzozowski, M. Wasiak, P. Sovák, and M. Moneta)
12.1 Introduction)
12.2 Experiment)
12.3 Results and Discussion)
12.3.1 As-Quenched $\operatorname{Fe}_{73.5-x}\operatorname{Si}_{13.5}\operatorname{B}_9\operatorname{Cu}_1\operatorname{Nb}_3\operatorname{Mn}_x$)
12.3.2 Annealed $Fe_{73.5-x}Si_{13.5}B_9Cu_1Nb_3Mn_x$	1
12.4 Conclusions)
References)

13 F	eCoZr	-Al ₂ O ₃ Granular Nanocomposite Films
with	a Tailor	ed Structural, Electric, Magnetotransport
and	Magne	etic Properties
J.A.	Fedotou	<i>va</i>
13.1	Introdu	uction
	13.1.1	Granular Nanocomposites for Electronics:
		Reasons of Interest
	13.1.2	Preparation and Structure of Granular MMCs233
	13.1.3	Percolation in Granular Nanocomposites
	13.1.4	Carrier Transport in Granular MMCs
		around Metal–Insulator Transition
	13.1.5	Magnetic Properties of Granular Nanocomposites
13.2	Proper	ties of FeCoZr–Al ₂ O ₃ Nanocomposite Films:
	Synthe	sis in Pure Ar and Mixed Ar + O Ambient $\dots 243$
	13.2.1	Synthesis and Samples Preparation
	13.2.2	Mössbauer Spectroscopy
	13.2.3	Alternation Grads- and SQUID-Magnetometry246
	13.2.4	Atomic Force–Magnetic Force Microscopy
	13.2.5	Electric and Magnetotransport Properties253
13.3	Conclu	ding Remarks
Refei	rences .	
14 T		amotism of Nanostructures Consisting
14 f	errom	agnetism of Nanostructures Consisting
01 F	Dinal	gnetic Granules
		ar Magnetic Interaction
L_{1} . M_{1}	Introdu	260
14.1	Lattice	uction
14.2	Lattice	s of Point-like and Rod-like refromagnetic Granules
	1491	2D Lattice of Doint Like Cronules
	14.2.1 14.2.1	2D Lattice of Point-Like Granules
	14.2.2 14.2.2	2D Lattice of Point-Like Granules
	14.2.0 14.9.4	2D Lattice of Rod-Like Granules
119	14.2.4	2D Lattice of Rod-Like Granules
14.0	1491	Magnetic Field of the Ellipsoidal Cranula
	14.0.1	2D Lattice of Ellipsoidal Granulas
	14.0.2 14.2.2	20 Lattice of Emplote Ellipsoidal Cranules
	14.0.0	2D Lattice of Florate Empsoidal Granules
	14.0.4	2D Lattice with Oblate Ellipsoidal Granules
	14.5.5	in a Magnetia Field
144	Dontial	III a Magnetile Field
14.4	r artial	Distribution of Local Magnetia Fields
	14.4.1	Magnetia Dhaga Diagram
145	14.4.2 Dand-	magnetic r flase Diagrafii
14.0	1451	In Systems of Point-Like and Rod-Like Ising Dipoles
	14.0.1	- ПП6ГОСПОЛОТЕТТ

XIV Contents

	14.5.2	Generalized Mean Field Theory
		for Point (Spherical) Dipoles
	14.5.3	Generalized Mean Field Theory for Rod-Like Dipoles 303
	14.5.4	Magnetic Properties of a Random System
		of Rod-Like Dipoles
14.6	Experi	mental Examples
	14.6.1	Magnetism of Ultrathin Films
	14.6.2	2D Lattices of Disk-Shaped Granules in a Magnetic Field 314 $$
	14.6.3	Magnetic Recording Density
	14.6.4	Conclusions
Refer	ences .	

15 Magnetic Dipolar Interactions in Nanoparticle Systems: Theory, Simulations and Ferromagnetic Resonance

	0
D.S.	Schmool and M. Schmalzl
15.1	Introduction
15.2	Theory of Dipole – Dipole Interactions
	in Magnetic Nanoparticles
	15.2.1 Dipolar Interactions
	15.2.2 Simulations for Arrays of Nanoparticles
15.3	Ferromagnetic Resonance in Magnetic Nanoparticles
15.4	Conclusions
Refe	rences
Contributors	