Contents

$1 \mathrm{G}$	eneral	Introduction	
<i>K.</i> (Dhno		1
Refe	rences		15
2 N	anome	ter-Scale Structure Formation on Solid Surfaces	
<i>M</i> . 7	Tanaka,	K. Shudo, and S. Ohno	19
2.1	Introd	uction	19
2.2	Atomi	c Layer Etching Processes on Silicon Surfaces	21
	2.2.1	Introduction	21
	2.2.2	Real-Time Optical Measurements	24
	2.2.3	Adsorption of Halogen Atoms: Sticking Coefficient	
		and Potential Barrier	26
	2.2.4	Site-Selective Adsorption	34
	2.2.5	Desorption of Silicon Halides and Restoration of the DAS	
		Structure	39
	2.2.6	Summary	48
2.3	Nanos	cale Fabrication Processes of Silicon Surfaces with Halogens .	50
	2.3.1	Introduction	50
	2.3.2	Scanning Tunneling Microscopy	53
	2.3.3	Thermal Desorption Process	56
	2.3.4	Cluster Alignment by Passive Fabrication	62
	2.3.5	Active Fabrication	68
	2.3.6	Summary	76
2.4	Self-O	rganized Nanopattern Formation on Copper Surfaces	77
	2.4.1	Introduction	77
	2.4.2	Experiments	78
	2.4.3	Novel Phenomena on $Cu(001)-c(2\times 2)N$	79
	2.4.4	Nanopattern Formation at Vicinal Surfaces	79
	2.4.5	Strain-Dependent Nucleation of Metal Islands	82
	2.4.6	Strain-Dependent Dissociation of Oxygen Molecules	85
	2.4.7	Summary	88
Refe	rences		89

VIII Contents

3 U	ltrafas	t Laser Spectroscopy Applicable
to N	Vano- a	and Micromaterials
J. T	akeda .	
3.1	Introd	uction
3.2	Femto	second Optical Kerr Gate Luminescence Spectroscopy 97
	3.2.1	Time-Resolved Luminescence Spectroscopy:
		Up-Conversion Technique vs. Opical Kerr Gate Method 97
	3.2.2	Femtosecond OKG Method: Experimental Setup
		and Results
3.3	Femto	second Transient Grating Spectroscopy Combined
	with a	Phase Mask
	3.3.1	Principle of Transient Grating Spectroscopy 105
	3.3.2	Transient Grating Spectroscopy Combined with a Phase
		Mask: Experimental Setup and Results
3.4	Femto	second Real-Time Pump-Probe Imaging Spectroscopy 109
	3.4.1	Principle of Real-Time Pump-Probe Imaging Spectroscopy . 109
	3.4.2	Experimental Demonstrations of Real-Time Pump-Probe
		Imaging Spectroscopy112
Refe	rences	
4 D	efects	in Anatase Titanium Dioxide
T.S	'ekiya a	$nd S. Kurita \dots 121$
4.1	Introd	uction
4.2	Growt	h of Anatase Single Crystal
4.3	Contro	ol of Defect States
	4.3.1	Heat Treatment Under Oxygen Pressure
	4.3.2	Heat Treatment Under Hydrogen Atmosphere
4.4	Proper	rties of Anatase
	4.4.1	Absorption Edge
	4.4.2	Photoluminescence
	4.4.3	EPR Spectra
	4.4.4	Electric Conduction
4.5	Carrie	r Control by Photoirradiation137
	4.5.1	Photoconductivity
	4.5.2	EPR
Refe	rences	
5 O	rganic	Radical 1,3,5-Trithia-2,4,6-Triazapentalenyl
(11 Free	IA) a	s Strongly Correlated Electronic Systems:
Refe 5 O	4.5.2 rences rganic	Radical 1,3,5-Trithia-2,4,6-Triazapentalenyl S Strongly Correlated Electronic Systems:
Èxn	erimei	nt and Theory

J.	akeda, Y. Noguchi, S. Ishii, and K. Ohno	3
5.1	Introduction	3
5.2	Crystalline Structure	1

Contents	IX
----------	----

 5.3.1 Paramagnetic Susceptibility and Electron Spin Resonance	. 146 . 150 . 151 . 157 . 157 . 161 . 162
and Electron Spin Resonance	146 150 151 157 157 161 162
5.3.2 Reflectivity 5.3.3 Photoinduced Magnetic Phase Transition	150 151 157 157 161 162
5.3.3 Photoinduced Magnetic Phase Transition	151 157 157 161 162
5.4 Floatronia Structure Calculations	157 157 161 162
5.4 Enectionic Structure Carculations	. 157 . 161 . 162
5.4.1 Results Within the LDA	$161 \\ 162$
5.4.2 Breakdown of the LDA	. 162
5.4.3 T -Matrix Theory	
5.4.4 Results in the <i>T</i> -Matrix Theory	. 164
5.4.5 Concluding Remarks	. 167
References	. 168
6 Ab Initio GW Calculations Using	
an All-Electron Approach	
S. Ishii, K. Ohno, and Y. Kawazoe	. 171
6.1 Introduction	171
6.2 Many-Body Perturbation Theory and GW Approximation	172
6.3 Choice of Basis-Set Function	170
6.4 Application to Clusters and Molecules	170
6.4.2 Comission ductors Clusters	170
6.4.2 Callium Arganida Clusters and Cristal	10
6.4.4 Banzana Malagula	100
6.4.5 Why Are I DA Figenvalues of HOMO Level Shallower	100
0.4.5 Why Are LDA Eigenvalues of HOMO Level Shahower Than Experiments?	18/
65 Solf-Consistent CW vs. First Iterative CW ($C_{\rm r}W_{\rm s}$)	18/
6.6 Appendix: Proof of WT Identity	185
6.7 Summary	187
Beferences	. 187
	101
7 First-Principles Calculations Involving Two-Particle Excited States of Atoms and Molecules	
Using T-Matrix Theory	
V Noguchi S Ishij and K Ohno	189
7.1 Background	189
7.2 Methodology: T-Matrix Theory	191
7.3 Double Electron Affinity of Alkali-Metal Clusters	193
7.3.1 Introduction	193
7.3.2 Effect of the Coulomb Interaction in the DEA Spectra	193
7.3.3 Short-Range Repulsive Coulomb Interaction	200
Within the <i>T</i> -Matrix Theory	. 195
7.3.4 Summary	. 196
7.4 Double Ionization Energy Spectra	. 196
7.4.1 Introduction	. 196
7.4.2 Two-Valence-Electron Systems	. 198

	7.4.3	Inert Gas Atoms
	7.4.4	CO and C_2H_2 Molecules
	7.4.5	Summary
7.5	Two-E	lectron Distribution Functions and Short-Range
	Electro	on Correlations
	7.5.1	Introduction
	7.5.2	Methodology
	7.5.3	Ar
	7.5.4	CO
	7.5.5	CO ₂
	7.5.6	$C_2H_2\ldots\ldots\ldots 210$
	7.5.7	Summary
7.6	Summa	ary
7.7	Appen	dix
	7.7.1	Fourier Transformation of Green's Function
	7.7.2	Fourier Transformation of K-Matrix
	7.7.3	Fourier Transformation of <i>T</i> -Matrix
Refe	ences .	

8 Green's Function Formulation of Electronic Transport at Nanoscale

XI

Self-Assembled Quantum Dot Structure Composed	
f III–V Compound Semiconductors	
K. Mukai	243
.1 Introduction	243
.2 Control of QD Structure by Growth Condition	244
9.2.1 Control of Growth Parameters	244
9.2.2 Closely Stacked QDs	246
9.2.3 QD Buried in Strained Layer	248
.3 Growth Process of QD Structure	252
.4 Analysis of QD Structure	256
9.4.1 Grazing Incidence X-Ray Scattering	256
9.4.2 Scanning Tunneling Microscopy	258
.5 Summary and Perspective	259
References	260
0 Potential-Tailored Quantum Wells for High- Performance	
Optical Modulators/Switches	
Γ. Arakawa and K. Tada	263
0.1 Introduction	263
0.2 Parabolic Potential Quantum Well2	264
0.3 Craded Cap Quantum Well	nee.

10.2	Parabolic Potential Quantum Well
10.3	Graded-Gap Quantum Well
10.4	Asymmetric Coupled Quantum Well
10.5	Intermixing Quantum Well
10.6	Summary
Refe	rences

11 Thermodynamic Properties of Materials Using Lattice-Gas Models with Renormalized Potentials *R. Sahara, H. Mizuseki, K. Ohno, and Y. Kawazoe.....*

XII Contents

	12.1.2 Assembly-Free, Single-Step Fabrication Process of
	Movable Microparts
12.2	Optically Driven Micromachines
	12.2.1 Optical Trapping
	12.2.2 Optical Driving Method of Multiple Micromachines
	12.2.3 Optimization of Time-Divided Laser Scanning
	12.2.4 Cooperative Control of Micromanipulators
	12.2.5 Optically Driven Micropump
	12.2.6 Concept of All-Optically Controlled Biochip
12.3	Conclusion and Future Prospect
Refe	rences
19 6	tudu of Complex Diamag
	budy of Complex Flasmas
19.10 19.1	Overview of Complex Plasma Research 311
12.1	Charging of a Dust Particlo in a Plasma 216
13.2	Measurements of the Charge of Dust Particles Levitating in
10.0	Electron Beam Plasma [12]
134	Various Approaches to Plasma-Aided Design
10.1	of Microparticles System in Ion Flow 315
13.3 13.4	13.4.1 Analysis of Ion Trajectories Around a Dust Particle in Ion
	Flow [17] 316
	13.4.2 Wake Potential Formation
	to Bind Dust Particles Aligned Along Ion Flow
	13.4.3 Attractive Force Between Dust Particles Aligned
	Perpendicular to Ion Flow [30]
13.5	Simulation Study of Cluster Design
	of Charged Dust Particles
13.6	Complex Plasma Experiment
	in Cryogenic Environment [38]
13.7	Summary
Refe	rences
Inde	320