Table of Contents

Chapter I Holonomic Systems	1
1. Equations of motion for the representation point of holonomic	
mechanical system	1
2. Lagrange's equations of the first and second kinds	4
3. The D'Alembert–Lagrange principle	12
4. Longitudinal accelerated motion of a car as an example of motion of a holonomic system with a nonretaining constraint	15
Chapter II Nonholonomic Systems	25
1. Nonholonomic constraint reaction	25
2. Equations of motion of nonholonomic systems. Maggi's	
equations	28
3. The generation of the most usual forms of equations of motion of	
nonholonomic systems from Maggi's equations	38
4. The examples of applications of different kinds equations	
of nonholonomic mechanics	45
5. The Suslov–Jourdain principle	66
6. The definitions of virtual displacements by Chetaev $\dots \dots$	74
Chapter III Linear Transformation of Forces	77
Chapter III Linear Transformation of Forces 1. Some general remarks	77 77
-	
1. Some general remarks	
 Some general remarks	77
 Some general remarks	77
 Some general remarks	77 83
 Some general remarks	77 83
 Some general remarks	77 83 88
 Some general remarks	77 83 88
 Some general remarks	77 83 88 92
 Some general remarks	777 83 88 92 97
 Some general remarks	777 83 88 92 97
 Some general remarks	777 833 888 92 97 100
 Some general remarks	777 833 888 92 97 100
 Some general remarks	77 83 88 92 97 100

xii Table of Contents

	3. Geometric interpretation of linear and nonlinear nonholonomic constraints. Generalized Gaussian principle	113
	4. The representation of equations of motion following from gener-	
	alized Gaussian principle in Maggi's form	119
	5. The representation of equations of motion following from gener-	
	alized Gaussian principle in Appell's form	121
C	hapter V The Mixed Problem of Dynamics. New Class	
•	of Control Problems	125
	1. The generalized problem of P. L. Chebyshev. A new class	
	of control problems	125
	2. A generation of a closed system of differential equations in gen-	
	eralized coordinates and the generalized control forces \dots	128
	3. The mixed problem of dynamics and Gaussian principle	131
	4. The motion of spacecraft with modulo constant acceleration	
	in Earth's gravitational field	137
	5. The satellite maneuver alternative to the Homann elliptic	-1.4.4
	motion	144
C	hapter VI Application of the Lagrange Multipliers	
•	to the Construction of Three New Methods for the Study	
	of Mechanical Systems	149
	1. Some remarks on the Lagrange multipliers	150
	2. Generalized Lagrangian coordinates of elastic body	152
	3. The application of Lagrange's equations of the first kind to the	
	study of normal oscillations of mechanical systems with dis-	
	tributed parameters	154
	4. Lateral vibration of a beam with immovable supports	160
	5. The application of Lagrange's equations of the first kind to the	
	determination of normal frequencies and oscillation modes of	105
	system of bars	165
	6. Transformation of the frequency equation to a dimensionless form and determination of minimal number of parameters governing	
	a natural frequency spectrum of the system	173
	7. A special form of equations of the dynamics of system of rigid	110
	bodies	178
	8. The application of special form of equations of dynamics to the	
	study of certain problems of robotics	181
	9. Application of generalized Gaussian principle to the problem of	
	suppression of mechanical systems oscillations	183
<u>~</u>		100
U.	hapter VII Equations of Motion in Quasicoordinates	193
	1. The equivalence of different forms of equations of motion of nonholonomic systems	193
	or nonnonounc systems	190

Table of Contents xiii

2. The Poincaré–Chetaev–Rumyantsev approach to the generation of equations of motion of nonholonomic systems	. 201
3. The approach of J. Papastavridis to the generation of equations of motion of nonholonomic systems	
Appendix A The Method of Curvilinear Coordinates	213
1. The curvilinear coordinates of point. Reciprocal bases	. 213
2. The relation between a reciprocal basis and gradients of scalar functions	r
3. Covariant and contravariant components of vector	
4. Covariant and contravariant components of vector	
5. Christoffel symbols	
6. Covariant and contravariant components of acceleration vector The Lagrange operator	
7. The case of cylindrical system of coordinates	
8. Covariant components of acceleration vector for nonstationary basis	
9. Covariant components of a derivative of vector	
Appendix B Stability and Bifurcation of Steady Motions of Nonholonomic Systems	229
Appendix C The Construction of Approximate Solutions for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle	235
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System	
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of	239
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 nic 245
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 nic 245 . 245
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 mic 245 . 246
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 mic 245 . 245 . 246 . 249
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 mic 245 . 245 . 246 . 249 g . 255
for Equations of Nonlinear Oscillations with the Usage of the Gauss Principle Appendix D The Motion of Nonholonomic System without Reactions of Nonholonomic Constraints 1. Existence conditions for "free (unconstrained) motion" of nonholonomic system	239 . 239 . 240 . 243 mic 245 . 246 . 249 g . 255 . 258

xiv Table of Contents

Appendix F Consideration of Reaction Forces of Holonor	
Constraints as Generalized Coordinates in Approximate Determination of Lower Frequencies of Elastic Systems	263
Appendix G The Duffing Equation and Strange Attractor	281
References	287
Index	327