Contents

1	Con	nplex N	etworks of Urban Environments	1
	1.1	Paradi	gm of a City	4
		1.1.1	Cities and Humans	4
		1.1.2	Facing the Challenges of Urbanization	6
		1.1.3	The Dramatis Personæ. How Should a City Look?	9
		1.1.4	Cities Size Distribution and Zipf's Law	15
		1.1.5	European Cities: Between Past and Future	17
	1.2	Maps	of Space and Urban Environments	18
		1.2.1	Object-Based Representations of Urban Environments.	
			Primary Graphs	18
		1.2.2	Cognitive Maps of Space in the Brain Network	19
		1.2.3	Space-Based Representations of Urban	
			Environments. Least Line Graphs	22
		1.2.4	Time-based Representations of Urban Environments	24
		1.2.5	How Did We Map Urban Environments?	26
	1.3	Struct	ure of City Spatial Graphs	28
		1.3.1	Matrix Representation of a Graph	29
		1.3.2	Shortest Paths in a Graph	31
		1.3.3	Degree Statistics of Urban Spatial Networks	32
		1.3.4	Integration Statistics of Urban Spatial Networks	35
		1.3.5	Scaling and Universality: Between Zipf and Matthew.	
			Morphological Definition of a City	37
		1.3.6	Cameo Principle of Scale-Free Urban Developments	40
		1.3.7	Trade-Off Models of Urban Sprawl Creation	42
	1.4	Comp	arative Study of Cities as Complex Networks	46
		1.4.1	Urban Structure Matrix	47
		1.4.2	Cumulative Urban Structure Matrix	49
		1.4.3	Structural Distance Between Cities	52
	1.5	Summ	arv	54

xii Contents

2	Way	finding	g and Affine Representations of Urban Environments	55	
	2.1	From	Mental Perspectives to the Affine Representation of Space	56	
	2.2	Undirected Graphs and Linear Operators Defined on Them			
		2.2.1	Automorphisms and Linear Functions		
			of the Adjacency Matrix	58	
		2.2.2	Measures and Dirichlet Forms	61	
	2.3		om Walks Defined on Undirected Graphs	62	
		2.3.1	Graphs as Discrete time Dynamical Systems	63	
		2.3.2	Transition Probabilities and Generating Functions	63	
		2.3.3	Stationary Distribution of Random Walks	64	
		2.3.4	Continuous Time Markov Jump Process	66	
	2.4	Study	of City Spatial Graphs by Random Walks	66	
		2.4.1	Alice and Bob Exploring Cities	67	
		2.4.2	Mixing Rates in Urban Sprawl and Hell's Kitchens	68	
		2.4.3	Recurrence Time to a Place in the City	70	
		2.4.4	What does the Physical Dimension of Urban Space Equal? .	72	
	2.5	First-F	Passage Times: How Random Walks Embed Graphs into		
			lean Space	74	
		2.5.1	Probabilistic Projective Geometry	74	
		2.5.2	Reduction to Euclidean Metric Geometry	76	
		2.5.3	Expected Numbers of Steps are Euclidean Distances	78	
		2.5.4	Probabilistic Topological Space	80	
		2.5.5	Euclidean Embedding of the Petersen Graph	80 83	
	2.6	Case study: Affine Representations of Urban Space			
		2.6.1	Ghetto of Venice	83	
		2.6.2	Spotting Functional Spaces in the City	86	
		2.6.3	Bielefeld and the Invisible Wall of Niederwall	86	
		2.6.4	Access to a Target Node and the Random Target Access		
			Time	89	
		2.6.5	Pattern of Spatial Isolation in Manhattan	92	
		2.6.6	Neubeckum: Mosque and Church in Dialog	98	
	2.7	Summ	nary	99	
3	E	1	Community Characteria by Difference Decourage	101	
3	3.1	_	Community Structure by Diffusion Processes		
	5.1	3.1.1	Random Walks and Diffusions on Weighted Graphs		
		3.1.2	Diffusion Equation and its Solution		
			Spectra of Special Graphs and Cities		
		3.1.3	Cheeger's Inequalities and Spectral Gaps		
		3.1.5	Is the City an Expander Graph?		
	3.2	onent Analysis of Transport Networks			
	3.4	3.2.1	Graph Cut Problems		
		3.2.2	Weakly Connected Graph Components		
		3.2.3	Graph Partitioning Objectives as Trace Optimization	113	
		3.2.3	· · · · · · · · · · · · · · · · · · ·	117	

Contents xiii

	3.3	Principal Component Analysis of Venetian Canals	
		3.3.2 A Time Scale Argument for the Number of Essential	121
		Vectors	124
		3.3.3 Low-Dimensional Representations of Transport Networks	
		by Principal Directions	125
		3.3.4 Dynamical Segmentation of Venetian Canals	
	3.4	Thermodynamical Formalism for Urban Area Networks	
		3.4.1 In Search of Lost Time: Is there an Alternative for Zoning? .	
		3.4.2 Internal Energy of Urban Space	
		3.4.3 Entropy of Urban Space	132
		3.4.4 Pressure in Urban Space	
	3.5	Summary	
4	Snec	etral Analysis of Directed Graphs and Interacting Networks	137
•	4.1	The Spectral Approach For Directed Graphs	
	4.2	Random Walks on Directed Graphs	
	1.2	4.2.1 A Time–Forward Random Walk	
		4.2.2 Backwards Time Random Walks	
		4.2.3 Stationary Distributions on Directed Graphs	
	4.3	Laplace Operator Defined on the Aperiodic Strongly Connected	170
	7.5	Directed Graphs	141
	4.4	Bi-Orthogonal Decomposition of Random Walks Defined	
		on Strongly Connected Directed Graphs	142
		4.4.1 Dynamically Conjugated Operators of Random Walks	
		4.4.2 Measures Associated with Random Walks	
		4.4.3 Biorthogonal Decomposition	
	4.5	Spectral Analysis of Self-Adjoint Operators Defined on Directed	111
	1.5	Graphs	146
	4.6	Self-Adjoint Operators for Interacting Networks	
	4.7	Summary	
		•	
5		an Area Networks and Beyond	
	5.1	Miracle of Complex Networks	
	5.2	Urban Sprawl – a European Challenge	
	5.3	Ranking Web Pages, Web Sites, and Documents	
	5.4	Image Processing	
	5.5	Summary	157
Bib	ligrap	ohy	159
			1.77